predict.cosimmr_output {cosimmr} | R Documentation |
Predicts proportion of each source in a mixture, based on values provided for covariates
Description
Predicts proportion of each source in a mixture, based on values provided for covariates
Usage
## S3 method for class 'cosimmr_output'
predict(object, x_pred, n_output = 3600, ...)
Arguments
object |
An object of class |
x_pred |
A data.frame of covariate values that the user wishes to predict source proportions for, provided in the same order that the original covariance matrix was. Important for this to be a data.frame otherwise numeric values can be set as characters and this causes incorrect calculations. |
n_output |
the number of posterior samples to generate. Defaults to 3600. |
... |
Other arguments (not used) |
Value
object of class 'cosimmr_pred_out'
Author(s)
Emma Govan <emmagovan@gmail.com> Andrew Parnell
References
Andrew C. Parnell, Donald L. Phillips, Stuart Bearhop, Brice X. Semmens, Eric J. Ward, Jonathan W. Moore, Andrew L. Jackson, Jonathan Grey, David J. Kelly, and Richard Inger. Bayesian stable isotope mixing models. Environmetrics, 24(6):387–399, 2013.
See Also
cosimmr_load
for creating objects suitable for this
function, and
plot.cosimmr_output
for plotting output.
Examples
## See the package vignette for a detailed run through of these 4 examples
# Data set 1: 10 obs on 2 isos, 4 sources, with tefs and concdep
data(geese_data_day1)
cov_1 = c(1,2,3,2,3,1,1,1,2)
simmr_1 <- with(
geese_data_day1,
cosimmr_load(
formula = mixtures ~ cov_1,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means
)
)
# Plot
plot(simmr_1)
# Print
simmr_1
# FFVB run
simmr_1_out <- cosimmr_ffvb(simmr_1)
# Print it
print(simmr_1_out)
# Plot
plot(simmr_1_out, type = "isospace")
plot(simmr_1_out, type = "beta_histogram", cov_name = "cov_1")
x_pred = data.frame(cov_1 = c(1,5))
pred_array<-predict(simmr_1_out, x_pred)