posterior_predictive {cosimmr} | R Documentation |
Plot the posterior predictive distribution for a cosimmr run
Description
This function takes the output from cosimmr_ffvb
and plots
the posterior predictive distribution to enable visualisation of model fit.
The simulated posterior predicted values are returned as part of the object
and can be saved for external use
Usage
posterior_predictive(
cosimmr_out,
prob = 0.5,
plot_ppc = TRUE,
n_samples = 3600,
sort_data = TRUE
)
Arguments
cosimmr_out |
A run of the cosimmr model from |
prob |
The probability interval for the posterior predictives. The default is 0.5 (i.e. 50pc intervals) |
plot_ppc |
Whether to create a bayesplot of the posterior predictive or not. |
n_samples |
The number of samples you wish to generate for y_pred. Defaults to 3600. |
sort_data |
Whether to order the data from lowest to highest predicted mean or not. Defaults to TRUE. |
Value
plot of posterior predictives and simulated values
#' @author Emma Govan <emmagovan@gmail.com> Andrew Parnell
See Also
cosimmr_ffvb
for creating objects suitable for this
function
Examples
data(geese_data_day1)
cosimmr_1 <- with(
geese_data_day1,
cosimmr_load(
formula = mixtures ~ c(1,2,3,2,1,2,3,2,1),
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means
)
)
# Plot
plot(cosimmr_1)
# Print
cosimmr_1
# FFVB run
cosimmr_1_out <- cosimmr_ffvb(cosimmr_1)
# Prior predictive
post_pred <- posterior_predictive(cosimmr_1_out)