cosimmr_ffvb {cosimmr} | R Documentation |
Run a cosimmr_input
object through the Fixed Form Variational
Bayes(FFVB) function
Description
This is the main function of cosimmr. It takes a cosimmr_input
object
created via cosimmr_load
, runs it in fixed form
Variational Bayes to determine the dietary proportions, and then
outputs a cosimmr_output
object for further analysis and plotting
via plot.cosimmr_output
.
Usage
cosimmr_ffvb(
cosimmr_in,
prior_control = list(mu_0 = rep(0, (cosimmr_in$n_sources * cosimmr_in$n_covariates)),
mu_log_sig_sq_0 = rep(0, cosimmr_in$n_tracers), sigma_0 = 1, tau_shape = rep(1,
cosimmr_in$n_tracers), tau_rate = rep(1, cosimmr_in$n_tracers)),
ffvb_control = list(n_output = 3600, S = 500, P = 50, beta_1 = 0.75, beta_2 = 0.75, tau
= 500, eps_0 = 0.0011, t_W = 500)
)
Arguments
cosimmr_in |
An object created via the function |
prior_control |
A list of values including arguments named |
ffvb_control |
A list of values including arguments named |
Value
An object of class cosimmr_output
with two named top-level
components:
input |
The |
output |
A set of outputs produced by
the FFVB function. These can be analysed using the
|
Author(s)
Emma Govan <emmagovan@gmail.com>, Andrew Parnell
References
Andrew C. Parnell, Donald L. Phillips, Stuart Bearhop, Brice X. Semmens, Eric J. Ward, Jonathan W. Moore, Andrew L. Jackson, Jonathan Grey, David J. Kelly, and Richard Inger. Bayesian stable isotope mixing models. Environmetrics, 24(6):387–399, 2013.
Andrew C Parnell, Richard Inger, Stuart Bearhop, and Andrew L Jackson. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE, 5(3):5, 2010.
See Also
cosimmr_load
for creating objects suitable for this
function, plot.cosimmr_input
for creating isospace plots,
summary.cosimmr_output
for summarising output, and
plot.cosimmr_output
for plotting output.
Examples
## See the package vignette for a detailed run through of these examples
# Data set 1: 10 obs on 2 isos, 4 sources, with tefs and concdep
data(geese_data_day1)
x = c(1,2,3,2,1,3,2,1,2)
cosimmr_1 <- with(
geese_data_day1,
cosimmr_load(
formula = mixtures ~ x,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means
)
)
# Plot
plot(cosimmr_1)
# Print
cosimmr_1
# FFVB run
cosimmr_1_out <- cosimmr_ffvb(cosimmr_1)
# Print it
print(cosimmr_1_out)
# Summary
summary(cosimmr_1_out, type = "correlations")
summary(cosimmr_1_out, type = "statistics")
ans <- summary(cosimmr_1_out, type = c("quantiles", "statistics"))
# Plot
plot(cosimmr_1_out, type = "beta_boxplot", cov_name = "x")
plot(cosimmr_1_out, type = "beta_histogram", cov_name = "x")