smoothfun {cooltools} | R Documentation |

## Smoothed Function

### Description

Generates a cubic smoothed spline function y=f(x) approximating supplied (x,y)-data with a custom number of degrees of freedom. The routines builds on `smooth.spline`

, but directly returns the smoothed function rather than the fitted model.

### Usage

```
smoothfun(x, y = NULL, w = NULL, df = NULL, ...)
```

### Arguments

`x` |
a vector giving the values of the predictor variable, or a list or a two-column matrix specifying x and y. |

`y` |
responses. If y is missing or NULL, the responses are assumed to be specified by x, with x the index vector. |

`w` |
optional vector of weights of the same length as x; defaults to all 1. |

`df` |
the desired equivalent number of degrees of freedom. Must be in [2,nx], where nx is the number of unique x values. If not given, nx is set to the square root of the number of unique x-values. |

`...` |
additional optional arguments used by |

### Value

Returns a fast and vectorized smoothed function f(x).

### Author(s)

Danail Obreschkow

### See Also

### Examples

```
# make random data set
set.seed(1)
x = runif(100)
y = sin(2*pi*x)+rnorm(100, sd=0.5)
plot(x,y,pch=16)
# smoothed spline
f = smoothfun(x, y)
curve(f, add=TRUE, col='red')
# smoothed spline with custom degree of freedom
g = smoothfun(x, y, df=5)
curve(g, add=TRUE, col='blue')
```

*cooltools*version 2.4 Index]