BETABINOMIAL {convdistr} | R Documentation |
Factory for a BETABINOMIAL distribution object
Description
Returns an BETABINOMIAL distribution object that produce random numbers
from a betabinomial distribution using the rbbinom
function
Usage
new_BETABINOMIAL(p_size, p_shape1, p_shape2, p_dimnames = "rvar")
new_BETABINOMIAL_od(p_size, p_mu, p_od, p_dimnames = "rvar")
new_BETABINOMIAL_icc(p_size, p_mu, p_icc, p_dimnames = "rvar")
Arguments
p_size |
a non-negative parameter for the number of trials |
p_shape1 |
non-negative parameters of the Betabinomial distribution |
p_shape2 |
non-negative parameters of the Betabinomial distribution |
p_dimnames |
A character that represents the name of the dimension |
p_mu |
mean proportion for the binomial part of the distribution |
p_od |
over dispersion parameter |
p_icc |
intra-class correlation parameter |
Value
An object of class DISTRIBUTION
, BETADISTRIBUION
Functions
-
new_BETABINOMIAL_od()
: parametrization based on dispersion -
new_BETABINOMIAL_icc()
: parametrization based on intra-class correlation
Note
There are several parametrization for the betabinomial distribution. The one based on shape1 and shape2 are parameters alpha and beta of the beta part of the distribution, but it can be parametrized as mu, and od where mu is the expected mean proportion and od is a measure of the overdispersion.
p_mu = p_shape1/(p_shape1 + p_shape2)
p_od = p_shape1 + p_shape2
p_shape1 = p_mu*p_od
p_shape2 <- (1-p_mu)*p_od
Another parametrization is based on mu and the icc where mu is the mean proportion and icc is the intra-class correlation.
p_mu = p_shape1/(p_shape1 + p_shape2)
p_icc = 1/(p_shape1 + p_shape2 + 1)
p_shape1 = p_mu*(1-p_icc)/p_icc
p_shape2 = (1-p_mu)*(1-p_icc)/p_icc
Author(s)
John J. Aponte
Examples
myDistr <- new_BETABINOMIAL(10,1,1)
myDistr$rfunc(10)