fit.ellipseLMG {conicfit} | R Documentation |
Fitting an ellipse using Implicit method
Description
fit.ellipseLMG
Fits an ellipse to a given set of points
(Implicit method) using geometric parameters. Conic:
Usage
fit.ellipseLMG(XY,ParGini,LambdaIni = 1, epsilon = 1e-06, IterMAX = 200,
L = 200)
Arguments
XY |
array of sample data |
ParGini |
initial parameter vector c(Center(1:2), Axes(1:2), Angle) |
LambdaIni |
initial value of the control parameter Lambda |
epsilon |
tolerance (small threshold) |
IterMAX |
maximum number of (main) iterations, usually 10-20 will suffice |
L |
boundary for major/minor axis |
Value
list(ParG , RSS , iters , TF) |
list with geometric parameters (A,B,C,D,E,F), Residual Sum of Squares, number of iterations and TF==TRUE if the method diverges |
Author(s)
Jose Gama
Source
Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/
N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.
N. Chernov and H. Ma, 2011 Least squares fitting of quadratic curves and surfaces In: Computer Vision, Editor S. R. Yoshida, Nova Science Publishers; pp. 285-302.
References
Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/
N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.
N. Chernov and H. Ma, 2011 Least squares fitting of quadratic curves and surfaces In: Computer Vision, Editor S. R. Yoshida, Nova Science Publishers; pp. 285-302.
Examples
XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParGini <- matrix(c(0,0,2,1,0),ncol=1)
LambdaIni=0.1
fit.ellipseLMG(XY,ParGini,LambdaIni)