| plotxc {condvis} | R Documentation | 
Condition selector plot
Description
Data visualisations used to select sections for
ceplot.
Usage
plotxc(xc, xc.cond, name = NULL, trim = NULL, select.colour = NULL,
  select.lwd = NULL, cex.axis = NULL, cex.lab = NULL, tck = NULL,
  select.cex = 1, hist2d = NULL, fullbin = NULL, ...)
Arguments
| xc | A numeric or factor vector, or a dataframe with two columns | 
| xc.cond | Same type as  | 
| name | The variable name for  | 
| trim | Logical; if  | 
| select.colour | Colour to highlight  | 
| select.lwd | Line weight to highlight  | 
| cex.axis | Axis text scaling | 
| cex.lab | Label text scaling | 
| tck | Plot axis tick size | 
| select.cex | Plot symbol size | 
| hist2d | If  | 
| fullbin | A cap on the counts in a bin for the 2-D histogram, helpful with skewed data. Larger values give more detail about data density. Defaults to 25. | 
| ... | Passed to  | 
Value
Produces a plot, and returns a list containing the relevant information to update the plot at a later stage.
References
O'Connell M, Hurley CB and Domijan K (2017). “Conditional Visualization for Statistical Models: An Introduction to the condvis Package in R.”Journal of Statistical Software, 81(5), pp. 1-20. <URL:http://dx.doi.org/10.18637/jss.v081.i05>.
See Also
Examples
## Histogram, highlighting the first case.
data(mtcars)
obj <- plotxc(mtcars[, "mpg"], mtcars[1, "mpg"])
obj$usr
## Barplot, highlighting 'cyl' = 6.
plotxc(as.factor(mtcars[, "cyl"]), 6, select.colour = "blue")
## Scatterplot, highlighting case 25.
plotxc(mtcars[, c("qsec", "wt")], mtcars[25, c("qsec", "wt")],
  select.colour = "blue", select.lwd = 1, lty = 3)
## Boxplot, where 'xc' contains one factor, and one numeric.
mtcars$carb <- as.factor(mtcars$carb)
plotxc(mtcars[, c("carb", "wt")], mtcars[25, c("carb", "wt")],
  select.colour = "red", select.lwd = 3)
## Spineplot, where 'xc' contains two factors.
mtcars$gear <- as.factor(mtcars$gear)
mtcars$cyl <- as.factor(mtcars$cyl)
plotxc(mtcars[, c("cyl", "gear")], mtcars[25, c("cyl", "gear")],
  select.colour = "red")
## Effect of 'trim'.
x <- c(-200, runif(400), 200)
plotxc(x, 0.5, trim = FALSE, select.colour = "red")
plotxc(x, 0.5, trim = TRUE, select.colour = "red")