uni.Wald {compound.Cox} | R Documentation |
Univariate Cox Wald test
Description
Univariate significance analyses via the Wald tests (Witten & Tibshirani 2010; Emura et al. 2019) based on association between individual features and survival.
Usage
uni.Wald(t.vec, d.vec, X.mat)
Arguments
t.vec |
Vector of survival times (time to either death or censoring) |
d.vec |
Vector of censoring indicators, 1=death, 0=censoring |
X.mat |
n by p matrix of covariates, where n is the sample size and p is the number of covariates |
Details
Wald test
Value
beta |
Estimated regression coefficients |
Z |
Z-value for testing H_0: beta=0 (Wald test) |
P |
P-value for testing H_0: beta=0 (Wald test) |
Author(s)
Takeshi Emura
References
Emura T, Matsui S, Chen HY (2019). compound.Cox: Univariate Feature Selection and Compound Covariate for Predicting Survival, Computer Methods and Programs in Biomedicine 168: 21-37.
Witten DM, Tibshirani R (2010) Survival analysis with high-dimensional covariates. Stat Method Med Res 19:29-51
Examples
data(Lung)
t.vec=Lung$t.vec[Lung$train==TRUE]
d.vec=Lung$d.vec[Lung$train==TRUE]
X.mat=Lung[Lung$train==TRUE,-c(1,2,3)]
uni.Wald(t.vec, d.vec, X.mat)