surv.factorial {compound.Cox} | R Documentation |
Factorial survival analysis under dependent censoring
Description
Perform factorial survival analysis under dependent censoring under an assumed copula (Emura et al. 2023-).
Usage
surv.factorial(t.vec,d.vec,group,copula,alpha,R=1000,t.upper=min(tapply(t.vec,group,max)),
C=NULL,S.plot=TRUE,mark.time=FALSE)
Arguments
t.vec |
Vector of survival times (time to either death or censoring) |
d.vec |
Vector of censoring indicators, 1=death, 0=censoring |
group |
Vector of group indicators, 1, 2, ..., d |
copula |
Copula function: "CG.Clayton","CG.Gumbel" or "CG.Frank" |
alpha |
Copula parameter |
R |
The number of Monte Carlo simulations to find the critical value of the F-test |
t.upper |
Follow-up end (default is max(t.vec)) |
C |
Contrast matrix |
S.plot |
If TRUE, the survival curve is displayed |
mark.time |
If TRUE, then curves are marked at each censoring time |
Details
Estimates of treatment effects and the test results are shown.
Value
copula.parameter |
Copula parameter |
p |
Estimates of treatment effects |
Var |
Variance estimates |
F |
F-statistic |
c.simu |
Critical value via the simulation method |
c.anal |
Critical value via the analytical method |
P.value |
P-value of the F-test |
Author(s)
Takeshi Emura
References
Emura T, Ditzhaus M, Dobler D (2023-), Factorial survival analysis for treatment effects under dependent censoring, in preparation.
Emura T, Matsui S, Chen HY (2019). compound.Cox: Univariate Feature Selection and Compound Covariate for Predicting Survival, Computer Methods and Programs in Biomedicine 168: 21-37.
Emura T, Chen YH (2018). Analysis of Survival Data with Dependent Censoring, Copula-Based Approaches, JSS Research Series in Statistics, Springer, Singapore.
Rivest LP, Wells MT (2001). A Martingale Approach to the Copula-graphic Estimator for the Survival Function under Dependent Censoring, J Multivar Anal; 79: 138-55.
Examples
## to be written ##