| CG.test {compound.Cox} | R Documentation | 
Testing survival difference of two groups via the CG estimators
Description
Testing survival difference of two prognostic groups separated by a prognostic index (PI). Survival probabilities are computed by the CG estimators (Yeh, et al. 2023).
Usage
CG.test(t.vec,d.vec,PI,cutoff=median(PI),alpha=2,
copula=CG.Clayton,S.plot=TRUE,N=10000,mark.time=TRUE)
Arguments
| t.vec | Vector of survival times (time to either death or censoring) | 
| d.vec | Vector of censoring indicators, 1=death, 0=censoring | 
| PI | Vector of real numbers (the values of a prognostic index) | 
| cutoff | A number determining the cut-off value of a prognostic index | 
| alpha | Copula parameter | 
| copula | Copula function: "CG.Clayton","CG.Gumbel" or "CG.Frank" | 
| S.plot | If TRUE, the survival curve is displayed | 
| N | The number of permutations | 
| mark.time | If TRUE, then curves are marked at each censoring time | 
Details
Two-sample comparison based on estimated survival functions via copula-graphic estimators under dependent censoring. The D statistic (the mean vertical difference betewen two estimated survival functions) is used for testing the null hypothesis of no difference in survival. See Yeh et al.(2023) for details.
Value
| test | Testing the difference of two survival functions | 
| Good | Good prognostic group defined by PI<=c | 
| Poor | Poor prognostic group defined by PI>c | 
Author(s)
Takeshi Emura, Pauline Baur
References
Emura T, Chen YH (2018). Analysis of Survival Data with Dependent Censoring, Copula-Based Approaches, JSS Research Series in Statistics, Springer, Singapore.
Rivest LP, Wells MT (2001). A Martingale Approach to the Copula-graphic Estimator for the Survival Function under Dependent Censoring, J Multivar Anal; 79: 138-55.
Yeh CT, Liao GY, Emura T (2023). Sensitivity analysis for survival prognostic prediction with gene selection: a copula method for dependent censoring, Biomedicines 11(3):797.
Examples
t.vec=c(1,3,5,4,7,8,10,13)
d.vec=c(1,0,0,1,1,0,1,0)
PI=c(8,7,6,5,4,3,2,1)
CG.test(t.vec,d.vec,PI,copula=CG.Clayton,alpha=18,N=100)
CG.test(t.vec,d.vec,PI,copula=CG.Gumbel,alpha=2,N=100)