CTTKmodel {colourvision} | R Documentation |
Chittka (1992) colour vision model
Description
Chittka (1992) colour hexagon extended to animals with any number of photoreceptors types.
Usage
CTTKmodel(photo=ncol(C)-1, R, I, Rb, C,
interpolate=TRUE, nm=seq(300,700,1))
Arguments
photo |
Number of photoreceptor types. Model accepts any number of photoreceptor types ( |
R |
Reflectance of observed objects. A data frame with first column corresponding to wavelength values and following columns with reflectance values. |
I |
Irradiance spectrum. A data frame with two columns only: first column corresponding to wavelength values and second column with irradiance values. Irradiance values must be in quantum flux units. |
Rb |
Background reflectance. A data frame with two columns only: first column corresponding to wavelength values and second column with reflectance values. |
C |
Photoreceptor sensitivity curves, from lowest to longest lambda-max. A data frame: first column corresponding to wavelength values and following columns with photoreceptor sensitivity values (see function |
interpolate |
Whether data files should be interpolated before further calculations. See |
nm |
A sequence of numeric values specifying where interpolation is to take place. See |
Details
The original model is available for trichromatic animals only. Thery and Casas (2002) derived a version for tetrachromatic animals which is implemented here. In colourvision
, this model was extended to any number of photoreceptors types (Gawryszewski 2018; see also Pike 2012). The colour hexagon in Chittka (1992) has a vector of length = 1.0 The chromaticity coordinates in colourvision
preserve the same vector length.
Photoreceptor outputs (E_i
) are calculated by:
E_i = \frac{q_i}{q_i+1}
where q_i
is given by Qr
.
Then, for trichromatic vision, coordinates in the colour space are found by (Chittka 1992):
X_1 = \frac{\sqrt{3}}{2}(E_3-E_1)
X_2 = E_2-\frac{1}{2}(E_1+E_3)
For tetrachromatic vision (Thery and Casas 2002):
X_1 = \frac{\sqrt{3}\sqrt{2}}{3}(E_3-E_4)
X_2 = E_1-\frac{1}{3}(E_2+E_3+E_4)
X_3 = \frac{2\sqrt{2}}{3}(\frac{1}{2}(E_3+E_4)-E_2)
For a pentachromatic animal following the same vector length:
X_1 = \frac{5}{2\sqrt{2}\sqrt{5}}(E_2-E_1)
X_2 = \frac{5\sqrt{2}}{2\sqrt{3}\sqrt{5}}(E_3-\frac{E_1+E_2}{2})
X_3 = \frac{5\sqrt{3}}{4\sqrt{5}}(E_4-\frac{E_1+E_2+E_3}{3})
X_4 = E_5-\frac{E1+E2+E3+E4}{4}
Value
Qri |
Photoreceptor photon catch values after the von Kries transformation (see function |
Ei |
Photoreceptor output values. Values can vary from 0 to 1. |
Xi |
Coordinates in the colour space. |
deltaS |
Euclidean distance to the origin of the colour space. It represents the conspicuousness of the stimulus ( |
Author(s)
Felipe M. Gawryszewski f.gawry@gmail.com
References
Chittka, L. 1992. The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J Comp Physiol A 170:533-543.
Gawryszewski, F.M. 2018. Colour vision models: Some simulations, a general n-dimensional model, and the colourvision R package. Ecology and Evolution, 10.1002/ece3.4288.
Pike, T.W. 2012. Generalised chromaticity diagrams for animals with n-chromatic colour vision. Journal of Insect Behavior 255: 277-286.
Thery, M., and J. Casas. 2002. Predator and prey views of spider camouflage. Nature 415:133-133.
See Also
CTTKhexagon
, CTTKhexagon3D
, photor
, RNLmodel
, EMmodel
, deltaS
Examples
##Photoreceptor sensitivity curves
##with lambda max at 350nm, 450nm and 550nm:
C<-photor(lambda.max=c(350,450,550))
## Grey background
## with 10 percent reflectance from 300 to 700nm:
Rb <- data.frame(300:700, rep(10, length(300:700)))
## Read CIE D65 standard illuminant
data("D65")
## Reflectance data
## with a sigmoid spectrum and midpoint at 500nm
R<-logistic(x=seq(300,700,1), x0=500, L=50, k=0.04)
## Run model
model<-CTTKmodel(photo=3, R=R, I=D65,
Rb=Rb, C=C)
#plot
plot(model)