dic.fit.mcmc {coarseDataTools} | R Documentation |
Fits the distribution to the passed-in data using MCMC as implemented in MCMCpack.
Description
Similar to dic.fit
but uses MCMC instead of a direct likelihood optimization routine to fit the model. Currently, four distributions are supported: log-normal, gamma, Weibull, and Erlang. See Details for prior specification.
Usage
dic.fit.mcmc(
dat,
prior.par1 = NULL,
prior.par2 = NULL,
init.pars = c(1, 1),
ptiles = c(0.05, 0.95, 0.99),
verbose = 1000,
burnin = 3000,
n.samples = 5000,
dist = "L",
seed = NULL,
...
)
Arguments
dat |
the data |
prior.par1 |
vector of first prior parameters for each model parameter. If |
prior.par2 |
vector of second prior parameters for each model parameter. If |
init.pars |
the initial parameter values (vector length = 2 ) |
ptiles |
returned percentiles of the survival survival distribution |
verbose |
how often do you want a print out from MCMCpack on iteration number and M-H acceptance rate |
burnin |
number of burnin samples |
n.samples |
number of samples to draw from the posterior (after the burnin) |
dist |
distribution to be used (L for log-normal,W for weibull, G for Gamma, and E for erlang, off1G for 1 day right shifted gamma) |
seed |
seed for the random number generator for MCMC |
... |
additional parameters to MCMCmetrop1R |
Details
The following models are used:
Log-normal model: f(x) = \frac{1}{x*\sigma \sqrt{2 * \pi}} exp\{-\frac{(\log x - \mu)^2}{2 * \sigma^2}\}
Log-normal Default Prior: \mu ~ N(0, 1000), log(\sigma) ~ N(0,1000)
Weibull model: f(x) = \frac{\alpha}{\beta}(\frac{x}{\beta})^{\alpha-1} exp\{-(\frac{x}{\beta})^{\alpha}\}
Weibull Default Prior Specification: log(\alpha) ~ N( 0, 1000), \beta ~ Gamma(0.001,0.001)
Gamma model: f(x) = \frac{1}{\theta^k \Gamma(k)} x^{k-1} exp\{-\frac{x}{\theta}\}
Gamma Default Prior Specification: p(k,\theta) \propto \frac{1}{\theta} * \sqrt{k*TriGamma(k)-1}
(Note: this is Jeffery's Prior when both parameters are unknown), and
Trigamma(x) = \frac{\partial}{\partial x^2} ln(\Gamma(x))
.)
Erlang model: f(x) = \frac{1}{\theta^k (k-1)!} x^{k-1} exp\{-\frac{x}{\theta}\}
Erlang Default Prior Specification: k \sim NBinom(100,1), log(\theta) \sim N(0,1000)
(Note: parameters in the negative binomial distribution above represent mean and size, respectively)
Value
a cd.fit.mcmc S4 object