fldcor {cmsafops} | R Documentation |
Determine correlations in grid space.
Description
The function determines correlations in grid space from data of two CM SAF NetCDF input files. This function is applicable to 3-dimensional NetCDF data.
Usage
fldcor(
var1,
infile1,
var2,
infile2,
outfile,
nc34 = 4,
overwrite = FALSE,
verbose = FALSE,
nc1 = NULL,
nc2 = NULL
)
Arguments
var1 |
Name of NetCDF variable of the first data set (character). |
infile1 |
Filename of first input NetCDF file. This may include the directory (character). |
var2 |
Name of NetCDF variable of the second data set (character). |
infile2 |
Filename of second input NetCDF file. This may include the directory (character). |
outfile |
Filename of output NetCDF file. This may include the directory (character). |
nc34 |
NetCDF version of output file. If |
overwrite |
logical; should existing output file be overwritten? |
verbose |
logical; if TRUE, progress messages are shown |
nc1 |
Alternatively to |
nc2 |
Alternatively to |
Value
A NetCDF file including a time series of correlations in grid space is written.
See Also
Other correlation and covariance:
fldcovar()
,
timcor()
,
timcovar()
Examples
## Create two example NetCDF files with a similar structure as used by CM
## SAF. The files are created with the ncdf4 package. Alternatively
## example data can be freely downloaded here: <https://wui.cmsaf.eu/>
library(ncdf4)
## create some (non-realistic) example data
lon <- seq(5, 15, 0.5)
lat <- seq(45, 55, 0.5)
time <- as.Date("2000-05-31")
origin <- as.Date("1983-01-01 00:00:00")
time <- as.numeric(difftime(time, origin, units = "hour"))
data1 <- array(250:350, dim = c(21, 21, 1))
data2 <- array(230:320, dim = c(21, 21, 1))
## create example NetCDF
x <- ncdim_def(name = "lon", units = "degrees_east", vals = lon)
y <- ncdim_def(name = "lat", units = "degrees_north", vals = lat)
t <- ncdim_def(name = "time", units = "hours since 1983-01-01 00:00:00",
vals = time, unlim = TRUE)
var1 <- ncvar_def("SIS", "W m-2", list(x, y, t), -999, prec = "float")
vars <- list(var1)
ncnew_1 <- nc_create(file.path(tempdir(), "CMSAF_example_file_1.nc"), vars)
ncnew_2 <- nc_create(file.path(tempdir(), "CMSAF_example_file_2.nc"), vars)
ncvar_put(ncnew_1, var1, data1)
ncvar_put(ncnew_2, var1, data2)
ncatt_put(ncnew_1, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_1, "lat", "standard_name", "latitude", prec = "text")
ncatt_put(ncnew_2, "lon", "standard_name", "longitude", prec = "text")
ncatt_put(ncnew_2, "lat", "standard_name", "latitude", prec = "text")
nc_close(ncnew_1)
nc_close(ncnew_2)
## Determine the correlations in grid space of the example CM SAF NetCDF files and
## write the output to a new file.
fldcor(var1 = "SIS", infile1 = file.path(tempdir(),"CMSAF_example_file_1.nc"),
var2 = "SIS", infile2 = file.path(tempdir(), "CMSAF_example_file_2.nc"),
outfile = file.path(tempdir(),"CMSAF_example_file_fldcor.nc"))
unlink(c(file.path(tempdir(),"CMSAF_example_file_1.nc"),
file.path(tempdir(),"CMSAF_example_file_2.nc"),
file.path(tempdir(),"CMSAF_example_file_fldcor.nc")))