sc_example {clustree} | R Documentation |
Simulated scRNA-seq dataset
Description
A simulated scRNA-seq dataset generated using the splatter
package and
clustered using the SC3
and Seurat
packages.
Usage
sc_example
Format
sc_example
is a list holding a simulated scRNA-seq dataset. Items
in the list included the simulated counts, normalised log counts,
tSNE dimensionality reduction and cell assignments from SC3
and Seurat
clustering.
Source
# Simulation library("splatter") # Version 1.2.1 sim <- splatSimulate(batchCells = 200, nGenes = 10000, group.prob = c(0.4, 0.2, 0.2, 0.15, 0.05), de.prob = c(0.1, 0.2, 0.05, 0.1, 0.05), method = "groups", seed = 1) sim_counts <- counts(sim)[1:1000, ] # SC3 Clustering library("SC3") # Version 1.7.6 library("scater") # Version 1.6.2 sim_sc3 <- SingleCellExperiment(assays = list(counts = sim_counts)) rowData(sim_sc3)$feature_symbol <- rownames(sim_counts) sim_sc3 <- normalise(sim_sc3) sim_sc3 <- sc3(sim_sc3, ks = 1:8, biology = FALSE, n_cores = 1) sim_sc3 <- runTSNE(sim_sc3) # Seurat Clustering library("Seurat") # Version 2.2.0 sim_seurat <- CreateSeuratObject(sim_counts) sim_seurat <- NormalizeData(sim_seurat, display.progress = FALSE) sim_seurat <- FindVariableGenes(sim_seurat, do.plot = FALSE, display.progress = FALSE) sim_seurat <- ScaleData(sim_seurat, display.progress = FALSE) sim_seurat <- RunPCA(sim_seurat, do.print = FALSE) sim_seurat <- FindClusters(sim_seurat, dims.use = 1:6, resolution = seq(0, 1, 0.1), print.output = FALSE) sc_example <- list(counts = counts(sim_sc3), logcounts = logcounts(sim_sc3), tsne = reducedDim(sim_sc3), sc3_clusters = as.data.frame(colData(sim_sc3)), seurat_clusters = sim_seurat@meta.data)
[Package clustree version 0.5.1 Index]