deltak {clusterCons} | R Documentation |
Function to calculate the change in the area under the curve (AUC) across a range of cluster number values
Description
This function takes an "auc"
class object and calculates the difference in AUC value by cluster number (called delta-K). Peaks in delta-K
coincide with the cluster numbers that are most robust and provide estimates for the optimal cluster number.
Usage
deltak(x)
Arguments
x |
a valid |
Value
deltak(x)
returns a data.frame with the following variables.
k |
cluster number as a factor |
a |
algorithm identifier as a factor |
dk |
the delta-K value |
Author(s)
Dr. T. Ian Simpson ian.simpson@ed.ac.uk
References
Merged consensus clustering to assess and improve class discovery with microarray data. Simpson TI, Armstrong JD and Jarman AP. BMC Bioinformatics 2010, 11:590.
See Also
Also see the aucs
function.
Examples
#load a test cluscomp result set
data(testcmr)
#calculate all of the AUC values from the \code{cluscomp} result for algorithm 'kmeans'
kmeanscmr <- testcmr[grep('kmeans',names(testcmr))];
acs <- aucs(kmeanscmr);
#calculate the delta-K values
dks <- deltak(acs);
[Package clusterCons version 1.2 Index]