auc {clusterCons} | R Documentation |
Calculate area under the curve statistics
Description
These functions calculate the area under the curve (AUC) for cumulative density functions of a consensus matrix. The function auc
operates on an indvidual consensus matrix whereas aucs
operates on an entire cluscomp
analysis result as described below.
Usage
auc(x)
aucs(x)
Arguments
x |
For The functions will not allow any missing values (NAs). |
Value
auc(x)
returns an individual AUC value.
aucs(x)
returns a data.frame with the following variables.
k |
cluster number as a factor |
a |
algorithm identifier as a factor |
aucs |
the AUC value |
Author(s)
Dr. T. Ian Simpson ian.simpson@ed.ac.uk
References
Merged consensus clustering to assess and improve class discovery with microarray data. Simpson TI, Armstrong JD and Jarman AP. BMC Bioinformatics 2010, 11:590.
See Also
Examples
#load up a test cluscomp result
data('testcmr');
#look at the result structure
summary(testcmr);
#calculate an individual AUC value for a consensus matrix
ac <- auc(testcmr$e1_kmeans_k2@cm);
#calculate all of the AUC values from the \code{cluscomp} result for algorithm 'kmeans'
kmeanscmr <- testcmr[grep('kmeans',names(testcmr))];
acs <- aucs(kmeanscmr);