ciu {ciu} | R Documentation |
Create ciu
object.
Description
Sets up a ciu
object with the given parameters. This is not the same as
a CIU
object as returned by the function ciu.new! a ciu
object is a
list with all the parameter values needed for Contextual Importance and
Utility calculations, whereas a CIU
object only exposes a set of methods
that can be called using the $
operator. CIU
provides the method
$as.ciu
for retrieving a ciu
object from a CIU
object.
Usage
ciu(
model,
formula = NULL,
data = NULL,
in.min.max.limits = NULL,
abs.min.max = NULL,
input.names = NULL,
output.names = NULL,
predict.function = NULL,
vocabulary = NULL
)
Arguments
model |
Model/"black-box" object (same parameter as |
formula |
Formula that describes input versus output values. Only to
be used together with |
data |
The training data used for training the model. If this parameter
is provided, a |
in.min.max.limits |
matrix with one row per output and two columns, where the first column indicates the minimal value and the second column the maximal value for that input. |
abs.min.max |
data.frame or matrix of min-max values of outputs, one row per output, two columns (min, max). |
input.names |
labels of inputs. |
output.names |
labels of outputs. |
predict.function |
can be supplied if a model that is not supported by ciu should be used. As an example, this is the function for lda: o.predict.function <- function(model, inputs) { pred <- predict(model,inputs) return(pred$posterior) } |
vocabulary |
list of labels/concepts to be used when producing
explanations and what combination of inputs they correspond to. Example of
two intermediate concepts and a higher-level one that combines them:
|
Value
ciu
object.
Author(s)
Kary Främling
See Also
Examples
# Explaining the classification of an Iris instance with lda model.
# We use a versicolor (instance 100).
library(MASS)
test.ind <- 100
iris_test <- iris[test.ind, 1:4]
iris_train <- iris[-test.ind, 1:4]
iris_lab <- iris[[5]][-test.ind]
model <- lda(iris_train, iris_lab)
# Create CIU object
ciu <- ciu(model, Species~., iris)
# This can be used with explain method for getting CIU values
# of one or several inputs. Here we get CIU for all three outputs
# with input feature "Petal.Length" that happens to be the most important.
ciu.explain(ciu, iris_test, 1)
# It is, however, more convenient to use one of the graphical visualizations.
# Here's one using ggplot.
ciu.ggplot.col(ciu, iris_test)