plotpredmvr {chemometrics} | R Documentation |
Plot predictions from repeated DCV
Description
Generate plot showing predicted values for Repeated Double Cross Validation
Usage
plotpredmvr(mvrdcvobj, optcomp, y, X, method = "simpls", ...)
Arguments
mvrdcvobj |
object from repeated double-CV, see |
optcomp |
optimal number of components |
y |
data from response variable |
X |
data with explanatory variables |
method |
the multivariate regression method to be used, see
|
... |
additional plot arguments |
Details
After running repeated double-CV, this plot visualizes the predicted values.
Value
A plot is generated.
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at>
References
K. Varmuza and P. Filzmoser: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton, FL, 2009.
See Also
Examples
data(NIR)
X <- NIR$xNIR[1:30,] # first 30 observations - for illustration
y <- NIR$yGlcEtOH[1:30,1] # only variable Glucose
NIR.Glc <- data.frame(X=X, y=y)
res <- mvr_dcv(y~.,data=NIR.Glc,ncomp=10,method="simpls",repl=10)
plot3 <- plotpredmvr(res,opt=7,y,X,method="simpls")
[Package chemometrics version 1.4.4 Index]