plotcompprm {chemometrics} | R Documentation |
Component plot for repeated DCV of PRM
Description
Generate plot showing optimal number of components for Repeated Double Cross-Validation of Partial Robust M-regression
Usage
plotcompprm(prmdcvobj, ...)
Arguments
prmdcvobj |
object from repeated double-CV of PRM, see |
... |
additional plot arguments |
Details
After running repeated double-CV for PRM, this plot helps to decide on the final number of components.
Value
optcomp |
optimal number of components |
compdistrib |
frequencies for the optimal number of components |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at>
References
K. Varmuza and P. Filzmoser: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton, FL, 2009.
See Also
Examples
data(NIR)
X <- NIR$xNIR[1:30,] # first 30 observations - for illustration
y <- NIR$yGlcEtOH[1:30,1] # only variable Glucose
NIR.Glc <- data.frame(X=X, y=y)
res <- prm_dcv(X,y,a=4,repl=2)
plot2 <- plotcompprm(res)
[Package chemometrics version 1.4.4 Index]