plotcompmvr {chemometrics} | R Documentation |
Component plot for repeated DCV
Description
Generate plot showing optimal number of components for Repeated Double Cross-Validation
Usage
plotcompmvr(mvrdcvobj, ...)
Arguments
mvrdcvobj |
object from repeated double-CV, see |
... |
additional plot arguments |
Details
After running repeated double-CV, this plot helps to decide on the final number of components.
Value
optcomp |
optimal number of components |
compdistrib |
frequencies for the optimal number of components |
Author(s)
Peter Filzmoser <P.Filzmoser@tuwien.ac.at>
References
K. Varmuza and P. Filzmoser: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton, FL, 2009.
See Also
Examples
data(NIR)
X <- NIR$xNIR[1:30,] # first 30 observations - for illustration
y <- NIR$yGlcEtOH[1:30,1] # only variable Glucose
NIR.Glc <- data.frame(X=X, y=y)
res <- mvr_dcv(y~.,data=NIR.Glc,ncomp=10,method="simpls",repl=10)
plot2 <- plotcompmvr(res)
[Package chemometrics version 1.4.4 Index]