AIC.cglasso {cglasso} | R Documentation |
Akaike Information Criterion
Description
‘AIC
’ computes the ‘Akaike Information Criterion’.
Usage
## S3 method for class 'cglasso'
AIC(object, k = 2, mle, ...)
Arguments
object |
an R object inheriting class ‘ |
k |
the penalty parameter to be used; the default |
mle |
logical. TRUE if the measure of goodness-of-fit should be computed using the maximum likelihood estimates. Default depends on the class of the argument |
... |
further arguments passed to |
Details
‘AIC
’ computes the following measure of goodness-of-fit (Ibrahim and other, 2008):
-2\,\mbox{Q-function} + k\,\mbox{df},
where k
is the penalty parameter and \mbox{df}
represents the number of unique non-zero parameters in the fitted model.
The values of the Q-function function are computed using QFun
. By default, for an object of class cglasso
these values are computed using the penalized estimates whereas maximum likelihood estimates are used if the object
is of class cggm
(see argument ‘mle
’ in QFun
).
The Akaike Information Criterion (AIC) is returned by letting k = 2
(default value of the function AIC
) whereas the ‘Bayesian Information Criterion’ (BIC) is returned by letting k = \log(n)
, where n
is the sample size.
Function AIC
can be passed to the functions select_cglasso
and summary.cglasso
to select and print the optimal fitted model, respectively.
The function plot.GoF
can be used to graphically evaluate the behaviour of the fitted models in terms of goodness-of-fit.
Value
‘AIC
’ return an R object of S3 class “GoF
”, i.e., a named list containing the following components:
value_gof |
a matrix storing the values of the measure of goodness-of-fit used to evaluate the fitted models. |
df |
a matrix storing the number of the estimated non-zero parameters. |
dfB |
a matrix storing the number of estimated non-zero regression coefficients. |
dfTht |
a matrix storing the number of estimated non-zero partial correlation coefficients. |
value |
a matrix storing the values of the Q-function. |
n |
the sample size. |
p |
the number of response variables. |
q |
the number of columns of the design matrix |
lambda |
the |
nlambda |
the number of |
rho |
the |
nrho |
the number of |
type |
a description of the computed measure of goodness-of-fit. |
model |
a description of the fitted model passed through the argument |
Author(s)
Luigi Augugliaro (luigi.augugliaro@unipa.it)
References
Ibrahim, J.G., Zhu, H. and Tang, N. (2008) <doi:10.1198/016214508000001057>. Model selection criteria for missing-data problems using the EM algorithm. Journal of the American Statistical Association 103, 1648–1658.
Sakamoto, Y., Ishiguro, M., and Kitagawa, G. (1986). Akaike Information Criterion Statistics. D. Reidel Publishing Company.
Wit, E., Heuvel, E. V. D., & Romeijn, J. W. (2012) <doi:10.1111/j.1467-9574.2012.00530.x>. All models are wrong...?: an introduction to model uncertainty. Statistica Neerlandica, 66(3), 217-236.
See Also
BIC.cglasso
, cglasso
, cggm
, QFun
, plot.GoF
and summary.cglasso
Examples
set.seed(123)
# Y ~ N(b0 + XB, Sigma) and probability of left/right censored values equal to 0.05
n <- 100L
p <- 3L
q <- 2L
b0 <- runif(p)
B <- matrix(runif(q * p), nrow = q, ncol = p)
X <- matrix(rnorm(n * q), nrow = n, ncol = q)
rho <- 0.3
Sigma <- outer(1L:p, 1L:p, function(i, j) rho^abs(i - j))
Z <- rcggm(n = n, b0 = b0, X = X, B = B, Sigma = Sigma, probl = 0.05, probr = 0.05)
out <- cglasso(. ~ ., data = Z)
AIC(out)
out.mle <- cggm(out, lambda.id = 3L, rho.id = 3L)
AIC(out.mle)