plotEigenvalues {cfda} | R Documentation |
Plot Eigenvalues
Description
Plot Eigenvalues
Usage
plotEigenvalues(x, cumulative = FALSE, normalize = FALSE, ...)
Arguments
x |
output of |
cumulative |
if TRUE, plot the cumulative eigenvalues |
normalize |
if TRUE eigenvalues are normalized for summing to 1 |
... |
|
Value
a ggplot
object that can be modified using ggplot2
package.
Author(s)
Quentin Grimonprez
See Also
Other encoding functions:
compute_optimal_encoding()
,
get_encoding()
,
plot.fmca()
,
plotComponent()
,
predict.fmca()
,
print.fmca()
,
summary.fmca()
Examples
# Simulate the Jukes-Cantor model of nucleotide replacement
K <- 4
Tmax <- 6
PJK <- matrix(1 / 3, nrow = K, ncol = K) - diag(rep(1 / 3, K))
lambda_PJK <- c(1, 1, 1, 1)
d_JK <- generate_Markov(n = 10, K = K, P = PJK, lambda = lambda_PJK, Tmax = Tmax)
d_JK2 <- cut_data(d_JK, Tmax)
# create basis object
m <- 6
b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 4)
# compute encoding
encoding <- compute_optimal_encoding(d_JK2, b, computeCI = FALSE, nCores = 1)
# plot eigenvalues
plotEigenvalues(encoding, cumulative = TRUE, normalize = TRUE)
# modify the plot using ggplot2
library(ggplot2)
plotEigenvalues(encoding, shape = 23) +
labs(caption = "Jukes-Cantor model of nucleotide replacement")
[Package cfda version 0.11.0 Index]