| plot.fmca {cfda} | R Documentation | 
Plot the optimal encoding
Description
Plot the optimal encoding
Usage
## S3 method for class 'fmca'
plot(
  x,
  harm = 1,
  states = NULL,
  addCI = FALSE,
  coeff = 1.96,
  col = NULL,
  nx = 128,
  ...
)
Arguments
x | 
 output of   | 
harm | 
 harmonic to use for the encoding  | 
states | 
 states to plot (default = NULL, it plots all states)  | 
addCI | 
 if TRUE, plot confidence interval (only when   | 
coeff | 
 the confidence interval is computed with +- coeff * the standard deviation  | 
col | 
 a vector containing color for each state  | 
nx | 
 number of time points used to plot  | 
... | 
 not used  | 
Details
The encoding for the harmonic h is a_{x}^{(h)} \approx \sum_{i=1}^m \alpha_{x,i}^{(h)}\phi_i.
Value
a ggplot object that can be modified using ggplot2 package.
Author(s)
Quentin Grimonprez
See Also
Other encoding functions: 
compute_optimal_encoding(),
get_encoding(),
plotComponent(),
plotEigenvalues(),
predict.fmca(),
print.fmca(),
summary.fmca()
Examples
# Simulate the Jukes-Cantor model of nucleotide replacement
K <- 4
Tmax <- 6
PJK <- matrix(1 / 3, nrow = K, ncol = K) - diag(rep(1 / 3, K))
lambda_PJK <- c(1, 1, 1, 1)
d_JK <- generate_Markov(n = 10, K = K, P = PJK, lambda = lambda_PJK, Tmax = Tmax)
d_JK2 <- cut_data(d_JK, Tmax)
# create basis object
m <- 6
b <- create.bspline.basis(c(0, Tmax), nbasis = m, norder = 4)
# compute encoding
encoding <- compute_optimal_encoding(d_JK2, b, computeCI = FALSE, nCores = 1)
# plot the encoding produced by the first harmonic
plot(encoding)
# modify the plot using ggplot2
library(ggplot2)
plot(encoding, harm = 2, col = c("red", "blue", "darkgreen", "yellow")) +
  labs(title = "Optimal encoding")
[Package cfda version 0.11.0 Index]