| ceteris_paribus {ceterisParibus} | R Documentation | 
Ceteris Paribus Explainer
Description
This function calculate ceteris paribus profiles for selected data points.
Usage
ceteris_paribus(
  explainer,
  observations,
  y = NULL,
  variable_splits = NULL,
  variables = NULL,
  grid_points = 101
)
Arguments
| explainer | a model to be explained, preprocessed by function 'DALEX::explain()'. | 
| observations | set of observarvation for which profiles are to be calculated | 
| y | true labels for 'observations'. If specified then will be added to ceteris paribus plots. | 
| variable_splits | named list of splits for variables, in most cases created with 'calculate_variable_splits()'. If NULL then it will be calculated based on validation data avaliable in the 'explainer'. | 
| variables | names of variables for which profiles shall be calculated. Will be passed to 'calculate_variable_splits()'. If NULL then all variables from the validation data will be used. | 
| grid_points | number of points for profile. Will be passed to 'calculate_variable_splits()'. | 
Value
An object of the class 'ceteris_paribus_explainer'. It's a data frame with calculated average responses.
Examples
library("DALEX")
 ## Not run: 
library("randomForest")
set.seed(59)
apartments_rf_model <- randomForest(m2.price ~ construction.year + surface + floor +
      no.rooms + district, data = apartments)
explainer_rf <- explain(apartments_rf_model,
      data = apartmentsTest[,2:6], y = apartmentsTest$m2.price)
apartments_small <- select_sample(apartmentsTest, 10)
cp_rf <- ceteris_paribus(explainer_rf, apartments_small)
cp_rf
cp_rf <- ceteris_paribus(explainer_rf, apartments_small, y = apartments_small$m2.price)
cp_rf
## End(Not run)