ck_read_yaml {cellKey}R Documentation

Read perturbation parameters from yaml-files

Description

ck_read_yaml() allows to create perturbation parameter inputs from yaml-files that were previously created using ck_params_cnts() or ck_params_nums().

Usage

ck_read_yaml(path)

Arguments

path

a path to a yaml-input file

Value

an object object suitable as input to method ⁠$params_nums_set()⁠ for the perturbation of continous variables in case path was created using ck_params_nums() or an object suitable as input for ⁠$params_cnts_set()⁠ for the perturbation of counts and frequencies if the input file was generated using ck_params_cnts().

Examples


x <- ck_create_testdata()

# create some 0/1 variables that should be perturbed later
x[, cnt_females := ifelse(sex == "male", 0, 1)]
x[, cnt_males := ifelse(sex == "male", 1, 0)]
x[, cnt_highincome := ifelse(income >= 9000, 1, 0)]
# a variable with positive and negative contributions
x[, mixed := sample(-10:10, nrow(x), replace = TRUE)]

# create record keys
x$rkey <- ck_generate_rkeys(dat = x)

# define required inputs

# hierarchy with some bogus codes
d_sex <- hier_create(root = "Total", nodes = c("male", "female"))
d_sex <- hier_add(d_sex, root = "female", "f")
d_sex <- hier_add(d_sex, root = "male", "m")

d_age <- hier_create(root = "Total", nodes = paste0("age_group", 1:6))
d_age <- hier_add(d_age, root = "age_group1", "ag1a")
d_age <- hier_add(d_age, root = "age_group2", "ag2a")

# define the cell key object
countvars <- c("cnt_females", "cnt_males", "cnt_highincome")
numvars <- c("expend", "income", "savings", "mixed")
tab <- ck_setup(
  x = x,
  rkey = "rkey",
  dims = list(sex = d_sex, age = d_age),
  w = "sampling_weight",
  countvars = countvars,
  numvars = numvars)

# show some information about this table instance
tab$print() # identical with print(tab)

# information about the hierarchies
tab$hierarchy_info()

# which variables have been defined?
tab$allvars()

# count variables
tab$cntvars()

# continuous variables
tab$numvars()

# create perturbation parameters for "total" variable and
# write to yaml-file

# create a ptable using functionality from the ptable-pkg
f_yaml <- tempfile(fileext = ".yaml")
p_cnts1 <- ck_params_cnts(
  ptab = ptable::pt_ex_cnts(),
  path = f_yaml)

# read parameters from yaml-file and set them for variable `"total"`
p_cnts1 <- ck_read_yaml(path = f_yaml)

tab$params_cnts_set(val = p_cnts1, v = "total")

# create alternative perturbation parameters by specifying parameters
para2 <- ptable::create_cnt_ptable(
  D = 8, V = 3, js = 2, create = FALSE)

p_cnts2 <- ck_params_cnts(ptab = para2)

# use these ptable it for the remaining variables
tab$params_cnts_set(val = p_cnts2, v = countvars)

# perturb a variable
tab$perturb(v = "total")

# multiple variables can be perturbed as well
tab$perturb(v = c("cnt_males", "cnt_highincome"))

# return weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))

# numerical variables (positive variables using flex-function)
# we also write the config to a yaml file
f_yaml <- tempfile(fileext = ".yaml")

# create a ptable using functionality from the ptable-pkg
# a single ptable for all cells
ptab1 <- ptable::pt_ex_nums(parity = TRUE, separation = FALSE)

# a single ptab for all cells except for very small ones
ptab2 <- ptable::pt_ex_nums(parity = TRUE, separation = TRUE)

# different ptables for cells with even/odd number of contributors
# and very small cells
ptab3 <- ptable::pt_ex_nums(parity = FALSE, separation = TRUE)

p_nums1 <- ck_params_nums(
  ptab = ptab1,
  type = "top_contr",
  top_k = 3,
  mult_params = ck_flexparams(
    fp = 1000,
    p = c(0.30, 0.03),
    epsilon = c(1, 0.5, 0.2),
    q = 3),
  mu_c = 2,
  same_key = FALSE,
  use_zero_rkeys = FALSE,
  path = f_yaml)

# we read the parameters from the yaml-file
p_nums1 <- ck_read_yaml(path = f_yaml)

# for variables with positive and negative values
p_nums2 <- ck_params_nums(
  ptab = ptab2,
  type = "top_contr",
  top_k = 3,
  mult_params = ck_flexparams(
    fp = 1000,
    p = c(0.15, 0.02),
    epsilon = c(1, 0.4, 0.15),
    q = 3),
  mu_c = 2,
  same_key = FALSE)

# simple perturbation parameters (not using the flex-function approach)
p_nums3 <- ck_params_nums(
  ptab = ptab3,
  type = "mean",
  mult_params = ck_simpleparams(p = 0.25),
  mu_c = 2,
  same_key = FALSE)

# use `p_nums1` for all variables
tab$params_nums_set(p_nums1, c("savings", "income", "expend"))

# use different parameters for variable `mixed`
tab$params_nums_set(p_nums2, v = "mixed")

# identify sensitive cells to which extra protection (`mu_c`) is added.
tab$supp_p(v = "income", p = 85)
tab$supp_pq(v = "income", p = 85, q = 90)
tab$supp_nk(v = "income", n = 2, k = 90)
tab$supp_freq(v = "income", n = 14, weighted = FALSE)
tab$supp_val(v = "income", n = 10000, weighted = TRUE)
tab$supp_cells(
  v = "income",
  inp = data.frame(
    sex = c("female", "female"),
    "age" = c("age_group1", "age_group3")
  )
)

# perturb variables
tab$perturb(v = c("income", "savings"))

# extract results
tab$numtab("income", mean_before_sum = TRUE)
tab$numtab("income", mean_before_sum = FALSE)
tab$numtab("savings")

# results can be resetted, too
tab$reset_cntvars(v = "cnt_males")

# we can then set other parameters and perturb again
tab$params_cnts_set(val = p_cnts1, v = "cnt_males")

tab$perturb(v = "cnt_males")

# write results to a .csv file
tab$freqtab(
  v = c("total", "cnt_males"),
  path = file.path(tempdir(), "outtab.csv")
)

# show results containing weighted and unweighted results
tab$freqtab(v = c("total", "cnt_males"))

# utility measures for a count variable
tab$measures_cnts(v = "total", exclude_zeros = TRUE)

# modifications for perturbed count variables
tab$mod_cnts()

# display a summary about utility measures
tab$summary()


[Package cellKey version 1.0.2 Index]