estimate_effect {causalOT} | R Documentation |
Estimate treatment effects
Description
Estimate treatment effects
Usage
estimate_effect(
causalWeights,
x = NULL,
y = NULL,
model.function,
estimate.separately = TRUE,
augment.estimate = FALSE,
normalize.weights = TRUE,
...
)
Arguments
causalWeights |
An object of class causalWeights |
x |
A dataHolder, matrix, data.frame, or object of class DataSim. See calc_weight for more details how to input the data. If |
y |
The outcome vector. |
model.function |
The modeling function to use, if desired. Must take arguments "formula", "data", and "weights". Other arguments passed via |
estimate.separately |
Should the outcome model be estimated separately in each treatment group? TRUE or FALSE. |
augment.estimate |
Should an augmented, doubly robust estimator be used? |
normalize.weights |
Should the weights in the |
... |
Pass additional arguments to the outcome modeling functions. |
Value
an object of class causalEffect
Examples
if ( torch::torch_is_installed() ){
# set-up data
data <- Hainmueller$new()
data$gen_data()
# calculate quantities
weight <- calc_weight(data, method = "COT",
estimand = "ATT",
options = list(lambda = 0))
tx_eff <- estimate_effect(causalWeights = weight)
# get estimate
print(tx_eff@estimate)
all.equal(coef(tx_eff), c(estimate = tx_eff@estimate))
}
[Package causalOT version 1.0.2 Index]