simulateFisherInfo {catSurv} | R Documentation |
Calculates Fisher Information under different adaptive battery specifications
Description
Takes in a a Cat
object, a set of respondents, and their corresponding theta
values, and calculates the amount of information given an adaptive battery.
Usage
simulateFisherInfo(catObjs = list(), theta, responses)
Arguments
catObjs |
A list of |
theta |
A vector of numerics representing the true value of theta. |
responses |
A dataframe of answer profiles corresponding to the true values of theta. |
Details
The function takes a Cat
object, theta
, and response profiles.
The user defines the selection type, estimation type, etc. so that the questions can be applied adaptively
These adaptive profiles are then used to calculate the total inforamtion gained for a respondent for all answered
items, conditioned on theta
.
Value
The function simulateFisherInfo
returns a dataframe where each Cat
object corresponds to a column and each respondent corresponds to a row.
Author(s)
Haley Acevedo, Ryden Butler, Josh W. Cutler, Matt Malis, Jacob M. Montgomery, Tom Wilkinson, Erin Rossiter, Min Hee Seo, Alex Weil, Jaerin Kim, Dominique Lockett
See Also
Cat-class
, fisherTestInfo
, selectItem
Examples
# Load Cat object
data(grm_cat)
# Simulate respondents
respondents <- plyr::adply(.data = matrix(c(-1, 0, 1)),
.margins = 1,
.id = NULL,
.fun = simulateRespondents, cat = grm_cat, n = 10)
# A stopping rule (here, a common one) is required
grm_cat@lengthThreshold <- 3
# Specify different adaptive inventory procedures
grm_MAP <- grm_EAP <- grm_cat
grm_MAP@estimation <- "MAP"
grm_EAP@estimation <- "EAP"
# List of Cat objects
grmList <- list(grm_MAP, grm_EAP)
# Results
fisher_inf_results <- simulateFisherInfo(catObjs = grmList,
theta = rep(c(-1, 0, 1),
each = 10),
responses = respondents)