probability {catSurv} | R Documentation |
Probability of Responses to a Question Item or the Left-Cumulative Probability of Responses
Description
Calculates the probability of specific responses or the left-cumulative probability of responses to item
conditioned on a respondent's ability (\theta
).
Usage
probability(catObj, theta, item)
Arguments
catObj |
An object of class |
theta |
A numeric or an integer indicating the value for |
item |
An integer indicating the index of the question item |
Details
For the ltm
model, the probability of non-zero response for respondent j
on item i
is
Pr(y_{ij}=1|\theta_j)=\frac{\exp(a_i + b_i \theta_j)}{1+\exp(a_i + b_i \theta_j)}
where \theta_j
is respondent j
's position on the latent scale of interest, a_i
is item i
's discrimination parameter,
and b_i
is item i
's difficulty parameter.
For the tpm
model, the probability of non-zero response for respondent j
on item i
is
Pr(y_{ij}=1|\theta_j)=c_i+(1-c_i)\frac{\exp(a_i + b_i \theta_j)}{1+\exp(a_i + b_i \theta_j)}
where \theta_j
is respondent j
's position on the latent scale of interest, a_i
is item i
's discrimination parameter,
b_i
is item i
's difficulty parameter, and c_i
is item i
's guessing parameter.
For the grm
model, the probability of a response in category k
or lower for respondent j
on item i
is
Pr(y_{ij} < k|\theta_j)=\frac{\exp(\alpha_{ik} - \beta_i \theta_{ij})}{1+\exp(\alpha_{ik} - \beta_i \theta_{ij})}
where \theta_j
is respondent j
's position on the latent scale of interest, \alpha_ik
the k
-th element of item i
's difficulty parameter,
\beta_i
is discrimination parameter vector for item i
. Notice the inequality on the left side and the absence of guessing parameters.
For the gpcm
model, the probability of a response in category k
for respondent j
on item i
is
Pr(y_{ij} = k|\theta_j)=\frac{\exp(\sum_{t=1}^k \alpha_{i} [\theta_j - (\beta_i - \tau_{it})])}
{\sum_{r=1}^{K_i}\exp(\sum_{t=1}^{r} \alpha_{i} [\theta_j - (\beta_i - \tau_{it}) )}
where \theta_j
is respondent j
's position on the latent scale of interest, \alpha_i
is the discrimination parameter for item i
,
\beta_i
is the difficulty parameter for item i
, and \tau_{it}
is the category t
threshold parameter for item i
, with k = 1,...,K_i
response options
for item i
. For identification purposes \tau_{i0} = 0
and \sum_{t=1}^1 \alpha_{i} [\theta_j - (\beta_i - \tau_{it})] = 0
. Note that when fitting the model,
the \beta_i
and \tau_{it}
are not distinct, but rather, the difficulty parameters are \beta_{it}
= \beta_{i}
- \tau_{it}
.
Value
When the model
slot of the catObj
is "ltm"
, the function probability
returns a numeric vector of length one representing the probability of observing a non-zero response.
When the model
slot of the catObj
is "tpm"
, the function probability
returns a numeric vector of length one representing the probability of observing a non-zero response.
When the model
slot of the catObj
is "grm"
, the function probability
returns a numeric vector of length k+1, where k is the number of possible responses. The first element will always be zero and the (k+1)th element will always be one. The middle elements are the cumulative probability of observing response k or lower.
When the model
slot of the catObj
is "gpcm"
, the function probability
returns a numeric vector of length k, where k is the number of possible responses. Each number represents the probability of observing response k.
Note
This function is to allow users to access the internal functions of the package. During item selection, all calculations are done in compiled C++
code.
Author(s)
Haley Acevedo, Ryden Butler, Josh W. Cutler, Matt Malis, Jacob M. Montgomery, Tom Wilkinson, Erin Rossiter, Min Hee Seo, Alex Weil
References
Baker, Frank B. and Seock-Ho Kim. 2004. Item Response Theory: Parameter Estimation Techniques. New York: Marcel Dekker.
Choi, Seung W. and Richard J. Swartz. 2009. “Comparison of CAT Item Selection Criteria for Polytomous Items." Applied Psychological Measurement 33(6):419-440.
Muraki, Eiji. 1992. “A generalized partial credit model: Application of an EM algorithm." ETS Research Report Series 1992(1):1-30.
van der Linden, Wim J. 1998. “Bayesian Item Selection Criteria for Adaptive Testing." Psychometrika 63(2):201-216.
See Also
Examples
## Loading ltm Cat object
## Probability for Cat object of the ltm model
data(ltm_cat)
probability(ltm_cat, theta = 1, item = 1)
## Loading tpm Cat object
## Probability for Cat object of the tpm model
probability(tpm_cat, theta = 1, item = 1)
## Loading grm Cat object
## Probability for Cat object of the grm model
probability(grm_cat, theta = 1, item = 1)
## Loading gpcm Cat object
## Probability for Cat object of the gpcm model
probability(gpcm_cat, theta = -3, item = 2)