grmCat {catSurv} | R Documentation |
Computerized Adaptive Testing Graded Response Model
Description
This function fits the graded response model for ordinal polytomous data and populates the fitted values for discrimination and difficulty parameters to an object of class Cat
.
Usage
## S4 method for signature 'data.frame'
grmCat(data, quadraturePoints = 21, ...)
## S4 method for signature 'grm'
grmCat(data, quadraturePoints = NULL, ...)
Arguments
data |
A data frame of manifest variables or an object of class |
quadraturePoints |
A numeric to be passed into the |
... |
arguments to be passed to methods. For more details about the arguments, see |
Details
The data
argument of the function grmCat
is either a data frame or an object of class grm
from the ltm
package. If it is a data frame each row represents a respondent and each column represents a question item. If it is an object of the class grm
, it is output from the grm
function in the ltm
package.
The quadraturePoints
argument of the function grmCat
is used only when the data
argument is a data frame. quadraturePoints
is then passed to the grm
function from the ltm
package when fitting the graded response model to the data and is used when approximating the value of integrals.
Value
The function grmCat
returns an object of class Cat
with changes to the following slots:
-
difficulty
A list of difficulty parameters, where each element in the list corresponds to the difficulty parameters for an item. -
discrimination
A vector consisting of discrimination parameters for each item. -
model
The string"grm"
, indicating thisCat
object corresponds to a graded response model.
See Cat-class
for default values of Cat
object slots. See Examples and setters
for example code to change slot values.
Note
In case the Hessian matrix at convergence is not positive definite try to use start.val = "random"
.
Author(s)
Haley Acevedo, Ryden Butler, Josh W. Cutler, Matt Malis, Jacob M. Montgomery, Tom Wilkinson, Erin Rossiter, Min Hee Seo, Alex Weil
References
Baker, Frank B. and Seock-Ho Kim. 2004. Item Response Theory: Parameter Estimation Techniques. New York: Marcel Dekker.
Samejima, Fumiko. 1969. “Estimation of Latent Ability Using a Response Pattern of Graded Scores." Psychometrika monograph supplement 34(4):100-114.
Rizopoulos, Dimitris. 2006. “ltm: An R Package for Latent Variable Modeling and Item Response Theory Analyses.“ Journal of Statistical Software 17(5):1-25.
See Also
Cat-class
, gpcmCat
, nfc
, probability
Examples
## Not run:
## Creating Cat object with raw data
data(nfc)
grm_cat1 <- grmCat(nfc, quadraturePoints = 100)
## Creating Cat object with fitted object of class grm
grm_fit <- grm(nfc, control = list(GHk = 100)) ## from ltm package
class(grm_fit)
grm_cat2 <- grmCat(grm_fit)
## Note the two Cat objects are identical
identical(grm_cat1, grm_cat2)
## End(Not run)
## Creating Cat objects from large datasets is computationally expensive
## Load the Cat object created from the above code
data(grm_cat)
## Slots that have changed from default values
getModel(grm_cat)
getDifficulty(grm_cat)
getDiscrimination(grm_cat)
## Changing slots from default values
setEstimation(grm_cat) <- "MLE"
setSelection(grm_cat) <- "MFI"