gpcmCat {catSurv} | R Documentation |
Computerized Adaptive Testing Generalized Partial Credit Model
Description
This function fits the generalized partial credit model for ordinal polytomous data and populates the fitted values for discrimination and difficulty parameters to an object of class Cat
.
Usage
## S4 method for signature 'data.frame'
gpcmCat(data, quadraturePoints = 21, ...)
## S4 method for signature 'gpcm'
gpcmCat(data, quadraturePoints = NULL, ...)
Arguments
data |
A data frame of manifest variables or an object of class |
quadraturePoints |
A numeric to be passed into the |
... |
arguments to be passed to methods. For more details about the arguments, see |
Details
The data
argument of the function gpcmCat
is either a data frame or an object of class gpcm
from the ltm
package. If it is a data frame each row represents a respondent and each column represents a question item. If it is an object of the class gpcm
, it is output from the gpcm
function in the ltm
package.
The quadraturePoints
argument of the function gpcmCat
is used only when the data
argument is a data frame. quadraturePoints
is then passed to the gpcm
function from the ltm
package when fitting the generalized partial credit model to the data and is used when approximating the value of integrals.
Value
The function gpcmCat
returns an object of class Cat
with changes to the following slots:
-
difficulty
A list of difficulty parameters, where each element in the list corresponds to the difficulty parameters for an item. -
discrimination
A vector consisting of of discrimination parameters for each item. -
model
The string"gpcm"
, indicating thisCat
object corresponds to a generalized partial credit model.
See Cat-class
for default values of Cat
object slots. See Examples and setters
for example code to change slot values.
Note
This Cat object should be used for testing package functionality only.
In case the Hessian matrix at convergence is not positive definite try to use start.val = "random"
.
Author(s)
Haley Acevedo, Ryden Butler, Josh W. Cutler, Matt Malis, Jacob M. Montgomery, Tom Wilkinson, Erin Rossiter, Min Hee Seo, Alex Weil
References
Baker, Frank B. and Seock-Ho Kim. 2004. Item Response Theory: Parameter Estimation Techniques. New York: Marcel Dekker.
Muraki, Eiji. 1992. “A generalized partial credit model: Application of an EM algorithm." ETS Research Report Series 1992(1):1-30.
Rizopoulos, Dimitris. 2006. “ltm: An R Package for Latent Variable Modeling and Item Response Theory Analyses." Journal of Statistical Software 17(5):1-25.
See Also
Cat-class
, grmCat
, polknowTAPS
, probability
Examples
## Not run:
## Creating Cat object with fitted object of class gpcm
data(polknowTAPS)
gpcm_fit <- gpcm(polknowTAPS, constraint = "gpcm", control = list(iter.qN = 200, GHk = 100))
class(gpcm_fit)
gpcm_cat <- gpcmCat(gpcm_fit)
## End(Not run)
## Creating Cat objects from large datasets is computationally expensive
## Load the Cat object created from the above code
data(gpcm_cat)
## Slots that have changed from default values
getModel(gpcm_cat)
getDifficulty(gpcm_cat)
getDiscrimination(gpcm_cat)
## Changing slots from default values
setEstimation(gpcm_cat) <- "MLE"
setSelection(gpcm_cat) <- "MFI"