groupBy {caroline} | R Documentation |
Group a datafame by a factor and perform aggreate functions.
Description
The R equvalent of a SQL 'group by' call.
Usage
groupBy(df, by, aggregation, clmns=names(df), collapse=',',
distinct=FALSE, sql=FALSE, full.names=FALSE, ...)
Arguments
df |
a data frame. |
by |
the factor (or name of a factor in df) used to determine the grouping. |
aggregation |
the functions to perform on the output (default is to sum). Suggested functions are: 'sum','mean','var','sd','max','min','length','paste',NULL. |
clmns |
the colums to include in the output. |
collapse |
string delimiter for columns aggregated via 'paste' concatenation. |
distinct |
used in conjunction with paste and collapse to only return unique elements in a delimited concatenated string |
sql |
whether or not to use SQLite to perform the grouping (not yet implimented). |
full.names |
names of the aggregation functions should be appended to the output column names |
... |
additional parameters (such as na.rm) passed to the underlying aggregate functions. |
Value
an summary/aggregate dataframe
See Also
Examples
df <- data.frame(a=runif(12),b=c(runif(11),NA),
z=rep(letters[13:18],2),w=rep(letters[20:23],3))
groupBy(df=df, by='w', clmns=c(rep(c('a','b'),3),'z','w'),
aggregation=c('sum','mean','var','sd','min','max','paste','length'),
full.names=TRUE, na.rm=TRUE)
# or using SQLite
groupBy(df=df, by='w', clmns=c(rep(c('a','b'),2),'z','w'),
aggregation=c('sum','mean','min','max','paste','length'),
full.names=TRUE, sql=TRUE)
## passing a custom function
meantop <- function(x,n=2, ...)
mean(x[order(x, decreasing=TRUE)][1:n], ...)
groupBy(df, by='w', aggregation=rep(c('mean','max','meantop'),2),
clmns=rep(c('a','b'),3), na.rm=TRUE)
[Package caroline version 0.9.2 Index]