cosinor {card} | R Documentation |
Fit a cosinor
Description
cosinor()
fits a regression model of a time variable to a
continuous outcome use trigonometric features. This approaches uses the
linearization of the parameters to assess their statistics and
distribution.
Usage
cosinor(t, ...)
## Default S3 method:
cosinor(t, ...)
## S3 method for class 'data.frame'
cosinor(t, y, tau, population = NULL, ...)
## S3 method for class 'matrix'
cosinor(t, y, tau, population = NULL, ...)
## S3 method for class 'formula'
cosinor(formula, data, tau, population = NULL, ...)
## S3 method for class 'recipe'
cosinor(t, data, tau, population = NULL, ...)
Arguments
t |
Represents the ordered time indices that provide the positions for the cosine wave. Depending on the context:
|
... |
Not currently used, but required for extensibility. |
y |
When
|
tau |
A vector that determines the periodicity of the time index. The number of elements in the vector determine the number of components (e.g. single versus multiple cosinor).
|
population |
Represents the population to be analyzed with a
population-mean cosinor. Defaults to NULL, assuming individual cosinors are
being generated. When a recipe or formula is used,
When a data frame or matrix is used,
|
formula |
A formula specifying the outcome terms on the left-hand side, and the predictor terms on the right-hand side. |
data |
When a recipe or formula is used,
|
Value
A cosinor
object.
See Also
Other cosinor:
augment.cosinor()
,
ggcosinor()
Examples
# Data setup
data("twins")
# Formula interface
model <- cosinor(rDYX ~ hour, twins, tau = 24)