PlotNumberOfClusters {carbondate} | R Documentation |
Plot Number of Calendar Age Clusters Estimated in Bayesian Non-Parametric DPMM Output
Description
Given output from one of the Bayesian non-parametric summarisation functions (either
PolyaUrnBivarDirichlet or WalkerBivarDirichlet) plot the
estimated number of calendar age clusters represented by the {}^{14}
C samples.
For more information read the vignette:
vignette("Non-parametric-summed-density", package = "carbondate")
Usage
PlotNumberOfClusters(output_data, n_burn = NA, n_end = NA)
Arguments
output_data |
The return value from one of the Bayesian non-parametric DPMM functions, e.g.
PolyaUrnBivarDirichlet or
WalkerBivarDirichlet, or a list, each item containing
one of these return values. Optionally, the output data can have an extra list item
named |
n_burn |
The number of MCMC iterations that should be discarded as burn-in (i.e.,
considered to be occurring before the MCMC has converged). This relates to the number
of iterations ( |
n_end |
The last iteration in the original MCMC chain to use in the calculations. Assumed to be the
total number of iterations performed, i.e. |
Value
None
See Also
PlotPredictiveCalendarAgeDensity and PlotCalendarAgeDensityIndividualSample for more plotting functions using DPMM output.
Examples
# NOTE: these examples are shown with a small n_iter to speed up execution.
# When you run ensure n_iter gives convergence (try function default).
polya_urn_output <- PolyaUrnBivarDirichlet(
two_normals$c14_age,
two_normals$c14_sig,
intcal20,
n_iter = 500,
n_thin = 2,
show_progress = FALSE)
PlotNumberOfClusters(polya_urn_output)