Ellipses {car} | R Documentation |
Ellipses, Data Ellipses, and Confidence Ellipses
Description
These functions draw ellipses, including data ellipses, and confidence ellipses for linear, generalized linear, and possibly other models.
Usage
ellipse(center, shape, radius, log="", center.pch=19, center.cex=1.5,
segments=51, draw=TRUE, add=draw, xlab="", ylab="",
col=carPalette()[2], lwd=2, fill=FALSE, fill.alpha=0.3, grid=TRUE, ...)
dataEllipse(x, y, groups, group.labels=group.levels, ellipse.label,
weights, log="", levels=c(0.5, 0.95), center.pch=19,
center.cex=1.5, draw=TRUE, plot.points=draw, add=!plot.points, segments=51,
robust=FALSE, xlab=deparse(substitute(x)), ylab=deparse(substitute(y)),
col=if (missing(groups)) carPalette()[1:2] else carPalette()[1:length(group.levels)],
pch=if (missing(groups)) 1 else seq(group.levels),
lwd=2, fill=FALSE, fill.alpha=0.3, grid=TRUE, id=FALSE, ...)
confidenceEllipse(model, ...)
## S3 method for class 'lm'
confidenceEllipse(model, which.coef, vcov.=vcov,
L, levels=0.95, Scheffe=FALSE, dfn,
center.pch=19, center.cex=1.5, segments=51, xlab, ylab,
col=carPalette()[2], lwd=2, fill=FALSE, fill.alpha=0.3, draw=TRUE, add=!draw,
grid=TRUE, ...)
## S3 method for class 'glm'
confidenceEllipse(model, chisq, ...)
## S3 method for class 'mlm'
confidenceEllipse(model, xlab, ylab, which.coef=1:2, ...)
## Default S3 method:
confidenceEllipse(model, which.coef, vcov.=vcov,
L, levels=0.95, Scheffe=FALSE, dfn,
center.pch=19, center.cex=1.5, segments=51, xlab, ylab,
col=carPalette()[2], lwd=2, fill=FALSE, fill.alpha=0.3, draw=TRUE, add=!draw,
grid=TRUE, ...)
confidenceEllipses(model, ...)
## Default S3 method:
confidenceEllipses(model, coefnames, main, grid=TRUE, ...)
## S3 method for class 'mlm'
confidenceEllipses(model, coefnames, main, ...)
Arguments
center |
2-element vector with coordinates of center of ellipse. |
shape |
|
radius |
radius of circle generating the ellipse. |
log |
when an ellipse is to be added to an existing plot, indicates
whether computations were on logged values and to be plotted on logged
axes; |
center.pch |
character for plotting ellipse center; if |
center.cex |
relative size of character for plotting ellipse center. |
segments |
number of line-segments used to draw ellipse. |
draw |
if |
add |
if |
xlab |
label for horizontal axis. |
ylab |
label for vertical axis. |
x |
a numeric vector, or (if |
y |
a numeric vector, of the same length as |
groups |
optional: a factor to divide the data into groups; a separate ellipse will be plotted for each group (level of the factor). |
group.labels |
labels to be plotted for the groups; by default, the levels of the |
ellipse.label |
a label for the ellipse(s) or a vector of labels; if several ellipses are drawn and just one label is given, then that label will be repeated. The default is not to label the ellipses. |
weights |
a numeric vector of weights, of the same length as |
plot.points |
if |
levels |
draw elliptical contours at these (normal) probability or confidence levels. |
robust |
if |
model |
a model object produced by |
which.coef |
2-element vector giving indices of coefficients to plot; if missing, the first two coefficients (disregarding the regression constant) will be selected. |
vcov. |
a coefficient-covariance matrix or a function (such as |
L |
As an alternative to selecting coefficients to plot, a transformation matrix can be specified to compute two
linear combinations of the coefficients; if the |
Scheffe |
if |
dfn |
“numerator” degrees of freedom (or just degrees of freedom for a GLM) for
drawing the confidence ellipse. Defaults to the number of coefficients in the model (disregarding the constant) if
|
chisq |
if |
col |
color for lines and ellipse center; the default is the second entry
in the current car palette (see |
pch |
for |
lwd |
line width; default is |
fill |
fill the ellipse with translucent color |
fill.alpha |
transparency of fill (default = |
... |
other plotting parameters to be passed to |
id |
controls point identification; if |
grid |
If TRUE, the default, a light-gray background grid is put on the graph |
coefnames |
character vector of coefficient names to use to label the diagonal of the pairwise confidence ellipse matrix plotted by |
main |
title for matrix of pairwise confidence ellipses. |
Details
The ellipse is computed by suitably transforming a unit circle.
dataEllipse
superimposes the normal-probability contours over a scatterplot
of the data.
confidenceEllipses
plots a matrix of all pairwise confidence ellipses; each panel of the matrix is created by confidenceEllipse
.
Value
These functions are mainly used for their side effect of producing plots. For
greater flexibility (e.g., adding plot annotations), however, ellipse
returns invisibly the (x, y) coordinates of the calculated ellipse.
dataEllipse
and confidenceEllipse
return invisibly the coordinates of one or more ellipses, in the latter instance a list named by
levels
; confidenceEllipses
invisibly returns NULL
.
Author(s)
Georges Monette, John Fox jfox@mcmaster.ca, and Michael Friendly.
References
Fox, J. (2016) Applied Regression Analysis and Generalized Linear Models, Third Edition. Sage.
Fox, J. and Weisberg, S. (2019) An R Companion to Applied Regression, Third Edition, Sage.
Monette, G. (1990) Geometry of multiple regression and 3D graphics. In Fox, J. and Long, J. S. (Eds.) Modern Methods of Data Analysis. Sage.
See Also
cov.trob
, cov.wt
, linearHypothesis
.
Examples
dataEllipse(Duncan$income, Duncan$education, levels=0.1*1:9,
ellipse.label=0.1*1:9, lty=2, fill=TRUE, fill.alpha=0.1)
confidenceEllipse(lm(prestige ~ income + education, data=Duncan), Scheffe=TRUE)
confidenceEllipse(lm(prestige ~ income + education, data=Duncan), vcov.=hccm)
confidenceEllipse(lm(prestige ~ income + education, data=Duncan),
L=c("income + education", "income - education"))
confidenceEllipses(lm(prestige ~ income + education + type, data=Duncan),
fill=TRUE)
cov2cor(vcov(lm(prestige ~ income + education + type,
data=Duncan))) # correlations among coefficients
wts <- rep(1, nrow(Duncan))
wts[c(6, 16)] <- 0 # delete Minister, Conductor
with(Duncan, {
dataEllipse(income, prestige, levels=0.68)
dataEllipse(income, prestige, levels=0.68, robust=TRUE,
plot.points=FALSE, col="green3")
dataEllipse(income, prestige, weights=wts, levels=0.68,
plot.points=FALSE, col="brown")
dataEllipse(income, prestige, weights=wts, robust=TRUE, levels=0.68,
plot.points=FALSE, col="blue")
})
with(Prestige, dataEllipse(income, education, type,
id=list(n=2, labels=rownames(Prestige)), pch=15:17,
xlim=c(0, 25000), center.pch="+",
group.labels=c("Blue Collar", "Professional", "White Collar"),
ylim=c(5, 20), level=.95, fill=TRUE, fill.alpha=0.1))