pdotaprox {capn} | R Documentation |
Calculating Pdot-approximation coefficients
Description
The function provides the Pdot-approximation coefficients of the defined Chebyshev polynomials in aproxdef
.
For now, only unidimensional case is developed.
Usage
pdotaprox(aproxspace, stock, sdot, dsdotds, dsdotdss, dwds, dwdss)
Arguments
aproxspace |
An approximation space defined by |
stock |
An array of stock, |
sdot |
An array of ds/dt, |
dsdotds |
An array of d(sdot)/ds, |
dsdotdss |
An array of d/ds(d(sdot)/ds), |
dwds |
An array of dw/ds, |
dwdss |
An array of d/ds(dw/ds), |
Details
The Pdot-approximation is finding the shadow price of a stock, p
from the relation:
p(s) = \frac{W_{s}(s) + \dot{p}(s)}{\delta - \dot{s}_{s}}
,
where W_{s} = \frac{dW}{ds}
, \dot{p}(s) = \frac{dp}{ds}
,
\dot{s}_{s} = \frac{d\dot{s}}{ds}
, and \delta
is the given discount rate.
In order to operationalize this approach, we take the time derivative of this expression:
\dot{p} = \frac{ \left( \left(W_{ss}\dot{s} + \ddot{p} \right) \left( \delta - \dot{s}_{s} \right) +
\left( W_{s} + \dot{p} \right) \left(\dot{s}_{ss} \dot{s} \right) \right) }
{ \left( \delta - \dot{s}_{s} \right)^{2} }
Consider approximation \dot{p}(s) = \mathbf{\mu}(s)\mathbf{\beta}
, \mathbf{\mu}(s)
is Chebyshev polynomials and \mathbf{\beta}
is their coeffcients.
Then, \ddot{p} = \frac{ d \dot{p}}{ds} \frac{ds}{dt} = diag (\dot{s}) \mathbf{\mu}_{s}(s) \mathbf{\beta}
by the orthogonality of Chebyshev basis.
Adopting the properties above, we can get the unknown coefficient vector \beta
from:
\mathbf{\mu \beta} = diag \left( \delta - \dot{s}_{s} \right)^{-2}
\left[ \left(W_{ss}\dot{s} + diag (\dot{s}) \mathbf{\mu}_{s} \mathbf{\beta} \right)\left( \delta - \dot{s}_{s} \right) +
diag \left(\dot{s}_{ss} \dot{s} \right) \left( W_{s} + \mathbf{\mu \beta} \right) \right]
, and
\mathbf{\beta} = \left[ diag \left( \delta - \dot{s}_{s} \right)^{2} \mathbf{\mu} - diag \left( \dot{s}\left( \delta - \dot{s}_{s} \right) \right) \mathbf{\mu}_{s}
- diag (\dot{s}_{ss} \dot{s} ) \mathbf{\mu} \right]^{-1}
\left( W_{ss} \dot{s} \left( \delta - \dot{s}_{s} \right) + W_{s} \dot{s}_{ss} \dot{s} \right)
.
If we suppose A = \left[ diag \left( \delta - \dot{s}_{s} \right)^{2} \mathbf{\mu} - diag \left( \dot{s}\left( \delta - \dot{s}_{s} \right) \right) \mathbf{\mu}_{s}
- diag (\dot{s}_{ss} \dot{s} ) \mathbf{\mu} \right]
and
B = \left( W_{ss} \dot{s} \left( \delta - \dot{s}_{s} \right) + W_{s} \dot{s}_{ss} \dot{s} \right)
,
then over-determined case can be calculated:
\mathbf{\beta} = \left( A^{T}A \right)^{-1} A^{T}B
.
For more detils see Fenichel and Abbott (2014).
Value
A list of approximation results: deg, lb, ub, delta, and coefficients. Use results$item
(or results[["item"]]
) to import each result item.
degree |
degree of Chebyshev polynomial |
lowerB |
lower bound of Chebyshev nodes |
upperB |
upper bound of Chebyshev nodes |
delta |
discount rate |
coefficient |
Chebyshev polynomial coefficients |
References
Fenichel, Eli P. and Joshua K. Abbott. (2014) "Natural Capital: From Metaphor to Measurement."
Journal of the Association of Environmental Economists. 1(1/2):1-27.
See Also
Examples
## 1-D Reef-fish example: see Fenichel and Abbott (2014)
data("GOM")
nodes <- chebnodegen(param$nodes,param$lowerK,param$upperK)
simuDataPdot <- cbind(nodes,sdot(nodes,param),
dsdotds(nodes,param),dsdotdss(nodes,param),
dwds(nodes,param),dwdss(nodes,param))
Aspace <- aproxdef(param$order,param$lowerK,param$upperK,param$delta)
pdotC <- pdotaprox(Aspace,simuDataPdot[,1],simuDataPdot[,2],
simuDataPdot[,3],simuDataPdot[,4],
simuDataPdot[,5],simuDataPdot[,6])