pdotaprox {capn} | R Documentation |
Calculating Pdot-approximation coefficients
Description
The function provides the Pdot-approximation coefficients of the defined Chebyshev polynomials in aproxdef
.
For now, only unidimensional case is developed.
Usage
pdotaprox(aproxspace, stock, sdot, dsdotds, dsdotdss, dwds, dwdss)
Arguments
aproxspace |
An approximation space defined by aproxdef function
|
stock |
An array of stock, s
|
sdot |
An array of ds/dt, s˙=dtds
|
dsdotds |
An array of d(sdot)/ds, dsds˙
|
dsdotdss |
An array of d/ds(d(sdot)/ds), dsd(dsds˙)
|
dwds |
An array of dw/ds, dsdW
|
dwdss |
An array of d/ds(dw/ds), dsd(dsdW)
|
Details
The Pdot-approximation is finding the shadow price of a stock, p
from the relation:
p(s)=δ−s˙sWs(s)+p˙(s)
,
where Ws=dsdW
, p˙(s)=dsdp
,
s˙s=dsds˙
, and δ
is the given discount rate.
In order to operationalize this approach, we take the time derivative of this expression:
p˙=(δ−s˙s)2((Wsss˙+p¨)(δ−s˙s)+(Ws+p˙)(s˙sss˙))
Consider approximation p˙(s)=μ(s)β
, μ(s)
is Chebyshev polynomials and β
is their coeffcients.
Then, p¨=dsdp˙dtds=diag(s˙)μs(s)β
by the orthogonality of Chebyshev basis.
Adopting the properties above, we can get the unknown coefficient vector β
from:
μβ=diag(δ−s˙s)−2[(Wsss˙+diag(s˙)μsβ)(δ−s˙s)+diag(s˙sss˙)(Ws+μβ)]
, and
β=[diag(δ−s˙s)2μ−diag(s˙(δ−s˙s))μs−diag(s˙sss˙)μ]−1(Wsss˙(δ−s˙s)+Wss˙sss˙)
.
If we suppose A=[diag(δ−s˙s)2μ−diag(s˙(δ−s˙s))μs−diag(s˙sss˙)μ]
and
B=(Wsss˙(δ−s˙s)+Wss˙sss˙)
,
then over-determined case can be calculated:
β=(ATA)−1ATB
.
For more detils see Fenichel and Abbott (2014).
Value
A list of approximation results: deg, lb, ub, delta, and coefficients. Use results$item
(or results[["item"]]
) to import each result item.
degree |
degree of Chebyshev polynomial
|
lowerB |
lower bound of Chebyshev nodes
|
upperB |
upper bound of Chebyshev nodes
|
delta |
discount rate
|
coefficient |
Chebyshev polynomial coefficients
|
References
Fenichel, Eli P. and Joshua K. Abbott. (2014) "Natural Capital: From Metaphor to Measurement."
Journal of the Association of Environmental Economists. 1(1/2):1-27.
See Also
aproxdef, pdotsim
Examples
## 1-D Reef-fish example: see Fenichel and Abbott (2014)
data("GOM")
nodes <- chebnodegen(param$nodes,param$lowerK,param$upperK)
simuDataPdot <- cbind(nodes,sdot(nodes,param),
dsdotds(nodes,param),dsdotdss(nodes,param),
dwds(nodes,param),dwdss(nodes,param))
Aspace <- aproxdef(param$order,param$lowerK,param$upperK,param$delta)
pdotC <- pdotaprox(Aspace,simuDataPdot[,1],simuDataPdot[,2],
simuDataPdot[,3],simuDataPdot[,4],
simuDataPdot[,5],simuDataPdot[,6])
[Package
capn version 1.0.0
Index]