| aproxdef {capn} | R Documentation | 
Defining Approximation Space
Description
The function defines an approximation space for all three approximation apporoaches (V, P, and Pdot).
Usage
aproxdef(deg, lb, ub, delta)
Arguments
deg | 
 An array of degrees of approximation function: degrees of Chebyshev polynomials  | 
lb | 
 An array of lower bounds  | 
ub | 
 An array of upper bounds  | 
delta | 
 discount rate  | 
Details
For the i-th dimension of i = 1, 2, \cdots, d, suppose a polynomial approximant
s_{i} over a bounded interval [a_{i},b_{i}] is defined by Chebysev nodes. Then, a d-dimensional
Chebyshev grids can be defined as:
\mathbf{S} = \left\{ (s_{1},s_{2},\cdots,s_{d}) \vert a_{i} \leq s_{1} \leq b_{i}, i = 1, 2, \cdots, d \right\} .
Suppose we impletement n_{i} numbers of polynomials (i.e., (n_{i}-1)-th order) for the i-th dimension.
The approximation space is defined as:
deg = c(n_{1},n_{2},\cdots,n_{d}),
lb = c(a_{1},a_{2},\cdots,a_{d}), and
ub = c(b_{1},b_{2},\cdots,b_{d}).
delta is the given constant discount rate.
Value
A list containing the approximation space
References
Fenichel, Eli P. and Joshua K. Abbott. (2014) "Natural Capital: From Metaphor to Measurement." Journal of the Association of Environmental Economists. 1(1/2):1-27.
See Also
vaprox, vsim, paprox, psim, pdotaprox, pdotsim
Examples
## Reef-fish example: see Fenichel and Abbott (2014)
delta <- 0.02
upper <- 359016000     # upper bound on approximation space
lower <- 5*10^6        # lower bound on approximation space
myspace <- aproxdef(50,lower,upper,delta)
## Two dimensional example
ub <- c(1.5,1.5)
lb <- c(0.1,0.1)
deg <- c(20,20)
delta <- 0.03
myspace <- aproxdef(deg,lb,ub,delta)