| CalculateGlobalSens {capm} | R Documentation |
Global sensitivity analysis
Description
Wraper for sensRange function, which calculates sensitivities of population sizes to parameters used in one of the following functions: SolveIASA, SolveSI or SolveTC.
Usage
CalculateGlobalSens(model.out = NULL, ranges = NULL, sensv = NULL,
all = FALSE)
Arguments
model.out |
output from one of the previous function or a |
ranges |
output from the |
sensv |
string with the name of the output variables for which the sensitivity are to be estimated. |
all |
logical. If |
Details
When all is equal to TRUE, dist argument in sensRange is defined as "latin" and when equal to FALSE, as "grid". The num argument in sensRange is defined as 100.
Value
A data.frame (extended by summary.sensRange when all == TRUE) containing the parameter set and the corresponding values of the sensitivity output variables.
References
Soetaert K and Petzoldt T (2010). Inverse modelling, sensitivity and monte carlo analysis in R using package FME. Journal of Statistical Software, 33(3), pp. 1-28.
Reichert P and Kfinsch HR (2001). Practical identifiability analysis of large environmental simulation models. Water Resources Research, 37(4), pp.1015-1030.
Baquero, O. S., Marconcin, S., Rocha, A., & Garcia, R. D. C. M. (2018). Companion animal demography and population management in Pinhais, Brazil. Preventive Veterinary Medicine.
http://oswaldosantos.github.io/capm
See Also
Examples
## IASA model
## Parameters and intial conditions.
data(dogs)
dogs_iasa <- GetDataIASA(dogs,
destination.label = "Pinhais",
total.estimate = 50444)
# Solve for point estimates.
solve_iasa_pt <- SolveIASA(pars = dogs_iasa$pars,
init = dogs_iasa$init,
time = 0:15,
alpha.owned = TRUE,
method = 'rk4')
## Set ranges 10 % greater and lesser than the
## point estimates.
rg_solve_iasa <- SetRanges(pars = dogs_iasa$pars)
## Calculate golobal sensitivity of combined parameters.
## To calculate global sensitivity to each parameter, set
## all as FALSE.
glob_all_solve_iasa <- CalculateGlobalSens(
model.out = solve_iasa_pt,
ranges = rg_solve_iasa,
sensv = "n2", all = TRUE)