calculateWeightsPLS {cSEM} | R Documentation |
Calculate composite weights using PLS-PM
Description
Calculate composite weights using the partial least squares path modeling (PLS-PM) algorithm (Wold 1975).
Usage
calculateWeightsPLS(
.data = args_default()$.data,
.S = args_default()$.S,
.csem_model = args_default()$.csem_model,
.conv_criterion = args_default()$.conv_criterion,
.iter_max = args_default()$.iter_max,
.PLS_ignore_structural_model = args_default()$.PLS_ignore_structural_model,
.PLS_modes = args_default()$.PLS_modes,
.PLS_weight_scheme_inner = args_default()$.PLS_weight_scheme_inner,
.starting_values = args_default()$.starting_values,
.tolerance = args_default()$.tolerance
)
Arguments
.data |
A |
.S |
The (K x K) empirical indicator correlation matrix. |
.csem_model |
A (possibly incomplete) cSEMModel-list. |
.conv_criterion |
Character string. The criterion to use for the convergence check. One of: "diff_absolute", "diff_squared", or "diff_relative". Defaults to "diff_absolute". |
.iter_max |
Integer. The maximum number of iterations allowed.
If |
.PLS_ignore_structural_model |
Logical. Should the structural model be ignored
when calculating the inner weights of the PLS-PM algorithm? Defaults to |
.PLS_modes |
Either a named list specifying the mode that should be used for
each construct in the form |
.PLS_weight_scheme_inner |
Character string. The inner weighting scheme
used by PLS-PM. One of: "centroid", "factorial", or "path".
Defaults to "path". Ignored if |
.starting_values |
A named list of vectors where the
list names are the construct names whose indicator weights the user
wishes to set. The vectors must be named vectors of |
.tolerance |
Double. The tolerance criterion for convergence.
Defaults to |
Value
A named list. J stands for the number of constructs and K for the number of indicators.
$W
A (J x K) matrix of estimated weights.
$E
A (J x J) matrix of inner weights.
$Modes
A named vector of modes used for the outer estimation.
$Conv_status
The convergence status.
TRUE
if the algorithm has converged andFALSE
otherwise. If one-step weights are used via.iter_max = 1
or a non-iterative procedure was used, the convergence status is set toNULL
.$Iterations
The number of iterations required.
References
Wold H (1975). “Path models with latent variables: The NIPALS approach.” In Blalock HM, Aganbegian A, Borodkin FM, Boudon R, Capecchi V (eds.), Quantitative Sociology, International Perspectives on Mathematical and Statistical Modeling, 307–357. Academic Press, New York.