draw_posterior.bvecmodel {bvartools} | R Documentation |
Posterior Simulation for Vector Error Correction Models
Description
Forwards model input to posterior simulation functions for vector error correction models.
Usage
## S3 method for class 'bvecmodel'
draw_posterior(object, FUN = NULL, mc.cores = NULL, ...)
Arguments
object |
a list of model specifications, which should be passed on
to function |
FUN |
the function to be applied to each list element in argument |
mc.cores |
the number of cores to use, i.e. at most how many child processes will be run simultaneously. The option is initialized from environment variable MC_CORES if set. Must be at least one, and parallelization requires at least two cores. |
... |
further arguments passed to or from other methods. |
Value
For multiple models a list of objects of class bvarlist
.
For a single model the object has the class of the output of the applied posterior
simulation function. In case the package's own functions are used, this will
be "bvec"
.
References
Koop, G., León-González, R., & Strachan R. W. (2010). Efficient posterior simulation for cointegrated models with priors on the cointegration space. Econometric Reviews, 29(2), 224–242. doi:10.1080/07474930903382208
Koop, G., León-González, R., & Strachan R. W. (2011). Bayesian inference in a time varying cointegration model. Journal of Econometrics, 165(2), 210–220. doi:10.1016/j.jeconom.2011.07.007
Examples
# Load data
data("e6")
e6 <- e6 * 100
# Generate model
model <- gen_vec(e6, p = 1, r = 1, const = "restricted",
iterations = 10, burnin = 10)
# Chosen number of iterations and burn-in should be much higher.
# Add priors
model <- add_priors(model)
# Obtain posterior draws
object <- draw_posterior(model)