bvec_to_bvar {bvartools} | R Documentation |
Transform a VEC Model to a VAR in Levels
Description
An object of class "bvec"
is transformed to a VAR in level representation.
Usage
bvec_to_bvar(object)
Arguments
object |
an object of class |
Value
An object of class "bvar"
.
References
Lütkepohl, H. (2006). New introduction to multiple time series analysis (2nd ed.). Berlin: Springer.
Examples
# Load data
data("e6")
# Generate model
data <- gen_vec(e6, p = 4, r = 1, const = "unrestricted", season = "unrestricted")
# Obtain data matrices
y <- t(data$data$Y)
w <- t(data$data$W)
x <- t(data$data$X)
# Reset random number generator for reproducibility
set.seed(1234567)
iterations <- 100 # Number of iterations of the Gibbs sampler
# Chosen number of iterations should be much higher, e.g. 30000.
burnin <- 100 # Number of burn-in draws
draws <- iterations + burnin
r <- 1 # Set rank
tt <- ncol(y) # Number of observations
k <- nrow(y) # Number of endogenous variables
k_w <- nrow(w) # Number of regressors in error correction term
k_x <- nrow(x) # Number of differenced regressors and unrestrictec deterministic terms
k_alpha <- k * r # Number of elements in alpha
k_beta <- k_w * r # Number of elements in beta
k_gamma <- k * k_x
# Set uninformative priors
a_mu_prior <- matrix(0, k_x * k) # Vector of prior parameter means
a_v_i_prior <- diag(0, k_x * k) # Inverse of the prior covariance matrix
v_i <- 0
p_tau_i <- diag(1, k_w)
u_sigma_df_prior <- r # Prior degrees of freedom
u_sigma_scale_prior <- diag(0, k) # Prior covariance matrix
u_sigma_df_post <- tt + u_sigma_df_prior # Posterior degrees of freedom
# Initial values
beta <- matrix(c(1, -4), k_w, r)
u_sigma_i <- diag(1 / .0001, k)
g_i <- u_sigma_i
# Data containers
draws_alpha <- matrix(NA, k_alpha, iterations)
draws_beta <- matrix(NA, k_beta, iterations)
draws_pi <- matrix(NA, k * k_w, iterations)
draws_gamma <- matrix(NA, k_gamma, iterations)
draws_sigma <- matrix(NA, k^2, iterations)
# Start Gibbs sampler
for (draw in 1:draws) {
# Draw conditional mean parameters
temp <- post_coint_kls(y = y, beta = beta, w = w, x = x, sigma_i = u_sigma_i,
v_i = v_i, p_tau_i = p_tau_i, g_i = g_i,
gamma_mu_prior = a_mu_prior,
gamma_v_i_prior = a_v_i_prior)
alpha <- temp$alpha
beta <- temp$beta
Pi <- temp$Pi
gamma <- temp$Gamma
# Draw variance-covariance matrix
u <- y - Pi %*% w - matrix(gamma, k) %*% x
u_sigma_scale_post <- solve(tcrossprod(u) +
v_i * alpha %*% tcrossprod(crossprod(beta, p_tau_i) %*% beta, alpha))
u_sigma_i <- matrix(rWishart(1, u_sigma_df_post, u_sigma_scale_post)[,, 1], k)
u_sigma <- solve(u_sigma_i)
# Update g_i
g_i <- u_sigma_i
# Store draws
if (draw > burnin) {
draws_alpha[, draw - burnin] <- alpha
draws_beta[, draw - burnin] <- beta
draws_pi[, draw - burnin] <- Pi
draws_gamma[, draw - burnin] <- gamma
draws_sigma[, draw - burnin] <- u_sigma
}
}
# Number of non-deterministic coefficients
k_nondet <- (k_x - 4) * k
# Generate bvec object
bvec_est <- bvec(y = data$data$Y, w = data$data$W,
x = data$data$X[, 1:6],
x_d = data$data$X[, 7:10],
Pi = draws_pi,
Gamma = draws_gamma[1:k_nondet,],
C = draws_gamma[(k_nondet + 1):nrow(draws_gamma),],
Sigma = draws_sigma)
# Thin posterior draws
bvec_est <- thin(bvec_est, thin = 5)
# Transfrom VEC output to VAR output
bvar_form <- bvec_to_bvar(bvec_est)
[Package bvartools version 0.2.4 Index]