forecast.PosteriorBSVARSIGN {bsvarSIGNs} | R Documentation |
Forecasting using Structural Vector Autoregression
Description
Samples from the joint predictive density of all of the dependent
variables for models from packages bsvars, bsvarSIGNs or
bvarPANELs at forecast horizons from 1 to horizon
specified as
an argument of the function. Also facilitates forecasting using models with
exogenous variables and conditional forecasting given projected future
trajcetories of (some of the) variables.
Usage
## S3 method for class 'PosteriorBSVARSIGN'
forecast(
posterior,
horizon = 1,
exogenous_forecast = NULL,
conditional_forecast = NULL
)
Arguments
posterior |
posterior estimation outcome - an object of class
|
horizon |
a positive integer, specifying the forecasting horizon. |
exogenous_forecast |
a matrix of dimension |
conditional_forecast |
a |
Value
A list of class Forecasts
containing the
draws from the predictive density and data. The output list includes element:
- forecasts
an
NxhorizonxS
array with the draws from predictive density- Y
an
NxT
matrix with the data on dependent variables
Author(s)
Tomasz Woźniak wozniak.tom@pm.me and Xiaolei Wang adamwang15@gmail.com
See Also
estimate.BSVARSIGN
, summary
, plot
Examples
# upload data
data(optimism)
# specify the model and set seed
set.seed(123)
# + no effect on productivity (zero restriction)
# + positive effect on stock prices (positive sign restriction)
sign_irf = matrix(c(0, 1, rep(NA, 23)), 5, 5)
specification = specify_bsvarSIGN$new(optimism, sign_irf = sign_irf)
# estimate the model
posterior = estimate(specification, 10)
# sample from predictive density 1 year ahead
predictive = forecast(posterior, 4)
# workflow with the pipe |>
############################################################
set.seed(123)
optimism |>
specify_bsvarSIGN$new(sign_irf = sign_irf) |>
estimate(S = 20) |>
forecast(horizon = 4) -> predictive
# conditional forecasting 2 quarters ahead conditioning on
# provided future values for the Gross Domestic Product
############################################################
cf = matrix(NA , 2, 5)
# # conditional forecasts equal to the last consumption observation
cf[,3] = tail(optimism, 1)[3]
predictive = forecast(posterior, 2, conditional_forecast = cf)
# workflow with the pipe |>
############################################################
set.seed(123)
optimism |>
specify_bsvarSIGN$new(sign_irf = sign_irf) |>
estimate(S = 10) |>
forecast(horizon = 2, conditional_forecast = cf) -> predictive