compute_variance_decompositions.PosteriorBSVARSIGN {bsvarSIGNs} | R Documentation |
Computes posterior draws of the forecast error variance decomposition
Description
Each of the draws from the posterior estimation of the model is transformed into a draw from the posterior distribution of the forecast error variance decomposition.
Usage
## S3 method for class 'PosteriorBSVARSIGN'
compute_variance_decompositions(posterior, horizon)
Arguments
posterior |
posterior estimation outcome - an object of class
|
horizon |
a positive integer number denoting the forecast horizon for the impulse responses computations. |
Value
An object of class PosteriorFEVD
, that is, an NxNx(horizon+1)xS
array with attribute PosteriorFEVD
containing S
draws of the
forecast error variance decomposition.
Author(s)
Xiaolei Wang adamwang15@gmail.com and Tomasz Woźniak wozniak.tom@pm.me
References
Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
See Also
compute_impulse_responses.PosteriorBSVARSIGN
, estimate.BSVARSIGN
, summary
, plot
Examples
# upload data
data(optimism)
# specify the model and set seed
set.seed(123)
# + no effect on productivity (zero restriction)
# + positive effect on stock prices (positive sign restriction)
sign_irf = matrix(c(0, 1, rep(NA, 23)), 5, 5)
specification = specify_bsvarSIGN$new(optimism, sign_irf = sign_irf)
# estimate the model
posterior = estimate(specification, 10)
# compute forecast error variance decomposition 2 years ahead
fevd = compute_variance_decompositions(posterior, horizon = 8)
# workflow with the pipe |>
############################################################
set.seed(123)
optimism |>
specify_bsvarSIGN$new(sign_irf = sign_irf) |>
estimate(S = 10) |>
compute_variance_decompositions(horizon = 8) -> fevd