cv.rbst {bst} | R Documentation |
Cross-Validation for Nonconvex Loss Boosting
Description
Cross-validated estimation of the empirical risk/error, can be used for tuning parameter selection.
Usage
cv.rbst(x, y, K = 10, cost = 0.5, rfamily = c("tgaussian", "thuber", "thinge",
"tbinom", "binomd", "texpo", "tpoisson", "clossR", "closs", "gloss", "qloss"),
learner = c("ls", "sm", "tree"), ctrl = bst_control(), type = c("loss", "error"),
plot.it = TRUE, main = NULL, se = TRUE, n.cores=2,...)
Arguments
x |
a data frame containing the variables in the model. |
y |
vector of responses. |
K |
K-fold cross-validation |
cost |
price to pay for false positive, 0 < |
rfamily |
nonconvex loss function types. |
learner |
a character specifying the component-wise base learner to be used:
|
ctrl |
an object of class |
type |
cross-validation criteria. For |
plot.it |
a logical value, to plot the estimated loss or error with cross validation if |
main |
title of plot |
se |
a logical value, to plot with standard errors. |
n.cores |
The number of CPU cores to use. The cross-validation loop will attempt to send different CV folds off to different cores. |
... |
additional arguments. |
Value
object with
residmat |
empirical risks in each cross-validation at boosting iterations |
mstop |
boosting iteration steps at which CV curve should be computed. |
cv |
The CV curve at each value of mstop |
cv.error |
The standard error of the CV curve |
rfamily |
nonconvex loss function types. |
...
Author(s)
Zhu Wang
See Also
Examples
## Not run:
x <- matrix(rnorm(100*5),ncol=5)
c <- 2*x[,1]
p <- exp(c)/(exp(c)+exp(-c))
y <- rbinom(100,1,p)
y[y != 1] <- -1
x <- as.data.frame(x)
cv.rbst(x, y, ctrl = bst_control(mstop=50), rfamily = "thinge", learner = "ls", type="lose")
cv.rbst(x, y, ctrl = bst_control(mstop=50), rfamily = "thinge", learner = "ls", type="error")
dat.m <- rbst(x, y, ctrl = bst_control(mstop=50), rfamily = "thinge", learner = "ls")
dat.m1 <- cv.rbst(x, y, ctrl = bst_control(twinboost=TRUE, coefir=coef(dat.m),
xselect.init = dat.m$xselect, mstop=50), family = "thinge", learner="ls")
## End(Not run)