model_summary {bruceR} | R Documentation |
Tidy report of regression models.
Description
Tidy report of regression models (most model types are supported). This function uses:
Usage
model_summary(
model.list,
std = FALSE,
digits = 3,
file = NULL,
check = TRUE,
zero = ifelse(std, FALSE, TRUE),
modify.se = NULL,
modify.head = NULL,
line = TRUE,
bold = 0,
...
)
Arguments
model.list |
A single model or a list of (various types of) models. Most types of regression models are supported! |
std |
Standardized coefficients? Defaults to |
digits |
Number of decimal places of output. Defaults to |
file |
File name of MS Word ( |
check |
If there is only one model in |
zero |
Display "0" before "."? Defaults to |
modify.se |
Replace standard errors.
Useful if you need to replace raw SEs with robust SEs.
New SEs should be provided as a list of numeric vectors.
See usage in |
modify.head |
Replace model names. |
line |
Lines look like true line ( |
bold |
The p-value threshold below which the coefficients will be formatted in bold. |
... |
Other arguments passed to
|
Value
Invisibly return the output (character string).
See Also
print_table
(print simple table)
Examples
#### Example 1: Linear Model ####
lm1 = lm(Temp ~ Month + Day, data=airquality)
lm2 = lm(Temp ~ Month + Day + Wind + Solar.R, data=airquality)
model_summary(lm1)
model_summary(lm2)
model_summary(list(lm1, lm2))
model_summary(list(lm1, lm2), std=TRUE, digits=2)
model_summary(list(lm1, lm2), file="OLS Models.doc")
unlink("OLS Models.doc") # delete file for code check
#### Example 2: Generalized Linear Model ####
glm1 = glm(case ~ age + parity,
data=infert, family=binomial)
glm2 = glm(case ~ age + parity + education + spontaneous + induced,
data=infert, family=binomial)
model_summary(list(glm1, glm2)) # "std" is not applicable to glm
model_summary(list(glm1, glm2), file="GLM Models.doc")
unlink("GLM Models.doc") # delete file for code check
#### Example 3: Linear Mixed Model ####
library(lmerTest)
hlm1 = lmer(Reaction ~ (1 | Subject), data=sleepstudy)
hlm2 = lmer(Reaction ~ Days + (1 | Subject), data=sleepstudy)
hlm3 = lmer(Reaction ~ Days + (Days | Subject), data=sleepstudy)
model_summary(list(hlm1, hlm2, hlm3))
model_summary(list(hlm1, hlm2, hlm3), std=TRUE)
model_summary(list(hlm1, hlm2, hlm3), file="HLM Models.doc")
unlink("HLM Models.doc") # delete file for code check
#### Example 4: Generalized Linear Mixed Model ####
library(lmerTest)
data.glmm = MASS::bacteria
glmm1 = glmer(y ~ trt + week + (1 | ID), data=data.glmm, family=binomial)
glmm2 = glmer(y ~ trt + week + hilo + (1 | ID), data=data.glmm, family=binomial)
model_summary(list(glmm1, glmm2)) # "std" is not applicable to glmm
model_summary(list(glmm1, glmm2), file="GLMM Models.doc")
unlink("GLMM Models.doc") # delete file for code check
#### Example 5: Multinomial Logistic Model ####
library(nnet)
d = airquality
d$Month = as.factor(d$Month) # Factor levels: 5, 6, 7, 8, 9
mn1 = multinom(Month ~ Temp, data=d, Hess=TRUE)
mn2 = multinom(Month ~ Temp + Wind + Ozone, data=d, Hess=TRUE)
model_summary(mn1)
model_summary(mn2)
model_summary(mn2, file="Multinomial Logistic Model.doc")
unlink("Multinomial Logistic Model.doc") # delete file for code check