%%COMPUTE%% {bruceR} | R Documentation |
Multivariate computation.
Description
Easily compute multivariate sum, mean, and other scores.
Reverse scoring can also be easily implemented without saving extra variables.
Alpha
function uses a similar method to deal with reverse scoring.
Three ways to specify variables:
-
var + items
: common and unique parts of variable names (suggested). -
vars
: a character vector of variable names (suggested). -
varrange
: starting and stopping positions of variables (NOT suggested).
Usage
COUNT(data, var = NULL, items = NULL, vars = NULL, varrange = NULL, value = NA)
MODE(data, var = NULL, items = NULL, vars = NULL, varrange = NULL)
SUM(
data,
var = NULL,
items = NULL,
vars = NULL,
varrange = NULL,
rev = NULL,
range = likert,
likert = NULL,
na.rm = TRUE
)
.sum(
var = NULL,
items = NULL,
vars = NULL,
varrange = NULL,
rev = NULL,
range = likert,
likert = NULL,
na.rm = TRUE
)
MEAN(
data,
var = NULL,
items = NULL,
vars = NULL,
varrange = NULL,
rev = NULL,
range = likert,
likert = NULL,
na.rm = TRUE
)
.mean(
var = NULL,
items = NULL,
vars = NULL,
varrange = NULL,
rev = NULL,
range = likert,
likert = NULL,
na.rm = TRUE
)
STD(
data,
var = NULL,
items = NULL,
vars = NULL,
varrange = NULL,
rev = NULL,
range = likert,
likert = NULL,
na.rm = TRUE
)
CONSEC(
data,
var = NULL,
items = NULL,
vars = NULL,
varrange = NULL,
values = 0:9
)
Arguments
data |
Data frame. |
var |
[Option 1]
Common part across variables: e.g., |
items |
[Option 1]
Unique part across variables: e.g., |
vars |
[Option 2]
Character vector specifying variables: e.g., |
varrange |
[Option 3]
Character string specifying positions ("start:stop") of variables: e.g., |
value |
[Only for |
rev |
[Optional] Variables that need to be reversed. It can be (1) a character vector specifying the reverse-scoring variables (recommended), or (2) a numeric vector specifying the item number of reverse-scoring variables (not recommended). |
range , likert |
[Optional] Range of likert scale: e.g., |
na.rm |
Ignore missing values. Defaults to |
values |
[Only for |
Value
A vector of computed values.
Functions
-
COUNT()
: Count a certain value across variables. -
MODE()
: Compute mode across variables. -
SUM()
: Compute sum across variables. -
.sum()
: Tidy version ofSUM
, only can be used inadd()/added()
-
MEAN()
: Compute mean across variables. -
.mean()
: Tidy version ofMEAN
, only can be used inadd()/added()
-
STD()
: Compute standard deviation across variables. -
CONSEC()
: Compute consecutive identical digits across variables (especially useful in detecting careless responding).
Examples
d = data.table(
x1 = 1:5,
x4 = c(2,2,5,4,5),
x3 = c(3,2,NA,NA,5),
x2 = c(4,4,NA,2,5),
x5 = c(5,4,1,4,5)
)
d
## I deliberately set this order to show you
## the difference between "vars" and "varrange".
## ====== Usage 1: data.table `:=` ====== ##
d[, `:=`(
na = COUNT(d, "x", 1:5, value=NA),
n.2 = COUNT(d, "x", 1:5, value=2),
sum = SUM(d, "x", 1:5),
m1 = MEAN(d, "x", 1:5),
m2 = MEAN(d, vars=c("x1", "x4")),
m3 = MEAN(d, varrange="x1:x2", rev="x2", range=1:5),
cons1 = CONSEC(d, "x", 1:5),
cons2 = CONSEC(d, varrange="x1:x5")
)]
d
## ====== Usage 2: `add()` & `added()` ====== ##
data = as.data.table(psych::bfi)
added(data, {
gender = as.factor(gender)
education = as.factor(education)
E = .mean("E", 1:5, rev=c(1,2), range=1:6)
A = .mean("A", 1:5, rev=1, range=1:6)
C = .mean("C", 1:5, rev=c(4,5), range=1:6)
N = .mean("N", 1:5, range=1:6)
O = .mean("O", 1:5, rev=c(2,5), range=1:6)
}, drop=TRUE)
data
## ====== New Feature for `var` & `items` ====== ##
d = data.table(
XX.1.pre = 1:5,
XX.2.pre = 6:10,
XX.3.pre = 11:15
)
add(d, { XX.mean = .mean("XX.{i}.pre", 1:3) })
add(d, { XX.mean = .mean("XX.{items}.pre", 1:3) }) # the same
add(d, { XX.mean = .mean("XX.{#$%^&}.pre", 1:3) }) # the same