granger_causality {bruceR} | R Documentation |
Granger causality test (multivariate).
Description
Granger test of predictive causality (between multivariate time series)
based on vector autoregression (VAR
) model.
Its output resembles the output of the vargranger
command in Stata (but here using an F test).
Usage
granger_causality(
varmodel,
var.y = NULL,
var.x = NULL,
test = c("F", "Chisq"),
file = NULL,
check.dropped = FALSE
)
Arguments
varmodel |
VAR model fitted using the |
var.y , var.x |
[Optional] Defaults to |
test |
F test and/or Wald |
file |
File name of MS Word ( |
check.dropped |
Check dropped variables. Defaults to |
Details
Granger causality test (based on VAR model) examines whether the lagged values of a predictor (or predictors) help to predict an outcome when controlling for the lagged values of the outcome itself.
Granger causality does not necessarily constitute a true causal effect.
Value
A data frame of results.
See Also
Examples
# R package "vars" should be installed
library(vars)
data(Canada)
VARselect(Canada)
vm = VAR(Canada, p=3)
model_summary(vm)
granger_causality(vm)