| granger_causality {bruceR} | R Documentation |
Granger causality test (multivariate).
Description
Granger test of predictive causality (between multivariate time series)
based on vector autoregression (VAR) model.
Its output resembles the output of the vargranger
command in Stata (but here using an F test).
Usage
granger_causality(
varmodel,
var.y = NULL,
var.x = NULL,
test = c("F", "Chisq"),
file = NULL,
check.dropped = FALSE
)
Arguments
varmodel |
VAR model fitted using the |
var.y, var.x |
[Optional] Defaults to |
test |
F test and/or Wald |
file |
File name of MS Word ( |
check.dropped |
Check dropped variables. Defaults to |
Details
Granger causality test (based on VAR model) examines whether the lagged values of a predictor (or predictors) help to predict an outcome when controlling for the lagged values of the outcome itself.
Granger causality does not necessarily constitute a true causal effect.
Value
A data frame of results.
See Also
Examples
# R package "vars" should be installed
library(vars)
data(Canada)
VARselect(Canada)
vm = VAR(Canada, p=3)
model_summary(vm)
granger_causality(vm)