EFA {bruceR} | R Documentation |
Principal Component Analysis (PCA) and Exploratory Factor analysis (EFA).
Description
An extension of psych::principal()
and psych::fa()
,
performing either Principal Component Analysis (PCA) or Exploratory Factor Analysis (EFA).
Three options to specify variables:
-
var + items
: use the common and unique parts of variable names. -
vars
: directly define a character vector of variables. -
varrange
: use the starting and stopping positions of variables.
Usage
EFA(
data,
var,
items,
vars = NULL,
varrange = NULL,
rev = NULL,
method = c("pca", "pa", "ml", "minres", "uls", "ols", "wls", "gls", "alpha"),
rotation = c("none", "varimax", "oblimin", "promax", "quartimax", "equamax"),
nfactors = c("eigen", "parallel", "(any number >= 1)"),
sort.loadings = TRUE,
hide.loadings = 0,
plot.scree = TRUE,
kaiser = TRUE,
max.iter = 25,
min.eigen = 1,
digits = 3,
file = NULL
)
PCA(..., method = "pca")
Arguments
data |
Data frame. |
var |
[Option 1]
Common part across variables: e.g., |
items |
[Option 1]
Unique part across variables: e.g., |
vars |
[Option 2]
Character vector specifying variables: e.g., |
varrange |
[Option 3]
Character string specifying positions ("start:stop") of variables: e.g., |
rev |
[Optional] Variables that need to be reversed. It can be (1) a character vector specifying the reverse-scoring variables (recommended), or (2) a numeric vector specifying the item number of reverse-scoring variables (not recommended). |
method |
Extraction method.
|
rotation |
Rotation method.
|
nfactors |
How to determine the number of factors/components?
|
sort.loadings |
Sort factor/component loadings by size? Defaults to |
hide.loadings |
A number (0~1) for hiding absolute factor/component loadings below this value.
Defaults to |
plot.scree |
Display the scree plot? Defaults to |
kaiser |
Do the Kaiser normalization (as in SPSS)? Defaults to |
max.iter |
Maximum number of iterations for convergence. Defaults to |
min.eigen |
Minimum eigenvalue (used if |
digits |
Number of decimal places of output. Defaults to |
file |
File name of MS Word ( |
... |
Arguments passed from |
Value
A list of results:
result
The R object returned from
psych::principal()
orpsych::fa()
result.kaiser
The R object returned from
psych::kaiser()
(if any)extraction.method
Extraction method
rotation.method
Rotation method
eigenvalues
A
data.frame
of eigenvalues and sum of squared (SS) loadingsloadings
A
data.frame
of factor/component loadings and communalitiesscree.plot
A
ggplot2
object of the scree plot
Functions
-
EFA()
: Exploratory Factor Analysis -
PCA()
: Principal Component Analysis - a wrapper ofEFA(..., method="pca")
Note
Results based on the varimax
rotation method are identical to SPSS.
The other rotation methods may produce results slightly different from SPSS.
See Also
Examples
data = psych::bfi
EFA(data, "E", 1:5) # var + items
EFA(data, "E", 1:5, nfactors=2) # var + items
EFA(data, varrange="A1:O5",
nfactors="parallel",
hide.loadings=0.45)
# the same as above:
# using dplyr::select() and dplyr::matches()
# to select variables whose names end with numbers
# (regexp: \d matches all numbers, $ matches the end of a string)
data %>% select(matches("\\d$")) %>%
EFA(vars=names(.), # all selected variables
method="pca", # default
rotation="varimax", # default
nfactors="parallel", # parallel analysis
hide.loadings=0.45) # hide loadings < 0.45