tidy_plus_plus {broom.helpers} | R Documentation |
Tidy a model and compute additional informations
Description
This function will apply sequentially:
Usage
tidy_plus_plus(
model,
tidy_fun = tidy_with_broom_or_parameters,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
variable_labels = NULL,
term_labels = NULL,
interaction_sep = " * ",
categorical_terms_pattern = "{level}",
disambiguate_terms = TRUE,
disambiguate_sep = ".",
add_reference_rows = TRUE,
no_reference_row = NULL,
add_pairwise_contrasts = FALSE,
pairwise_variables = all_categorical(),
keep_model_terms = FALSE,
pairwise_reverse = TRUE,
contrasts_adjust = NULL,
emmeans_args = list(),
add_estimate_to_reference_rows = TRUE,
add_header_rows = FALSE,
show_single_row = NULL,
add_n = TRUE,
intercept = FALSE,
include = everything(),
keep_model = FALSE,
tidy_post_fun = NULL,
quiet = FALSE,
strict = FALSE,
...
)
Arguments
model |
a model to be attached/tidied |
tidy_fun |
option to specify a custom tidier function |
conf.int |
should confidence intervals be computed? (see |
conf.level |
level of confidence for confidence intervals (default: 95%) |
exponentiate |
logical indicating whether or not to exponentiate the
coefficient estimates. This is typical for logistic, Poisson and Cox models,
but a bad idea if there is no log or logit link; defaults to |
variable_labels |
a named list or a named vector of custom variable labels |
term_labels |
a named list or a named vector of custom term labels |
interaction_sep |
separator for interaction terms |
categorical_terms_pattern |
a glue pattern for
labels of categorical terms with treatment or sum contrasts
(see |
disambiguate_terms |
should terms be disambiguated with
|
disambiguate_sep |
separator for |
add_reference_rows |
should reference rows be added? |
no_reference_row |
variables (accepts tidyselect notation)
for those no reference row should be added, when |
add_pairwise_contrasts |
|
pairwise_variables |
variables to add pairwise contrasts (accepts tidyselect notation) |
keep_model_terms |
keep original model terms for variables where
pairwise contrasts are added? (default is |
pairwise_reverse |
determines whether to use |
contrasts_adjust |
optional adjustment method when computing contrasts,
see |
emmeans_args |
list of additional parameter to pass to
|
add_estimate_to_reference_rows |
should an estimate value be added to reference rows? |
add_header_rows |
should header rows be added? |
show_single_row |
variables that should be displayed
on a single row (accepts tidyselect notation), when
|
add_n |
should the number of observations be added? |
intercept |
should the intercept(s) be included? |
include |
variables to include. Accepts tidyselect
syntax. Use |
keep_model |
should the model be kept as an attribute of the final result? |
tidy_post_fun |
custom function applied to the results at the end of
|
quiet |
logical argument whether broom.helpers should not return
a message when requested output cannot be generated. Default is |
strict |
logical argument whether broom.helpers should return an error
when requested output cannot be generated. Default is |
... |
other arguments passed to |
Note
tidy_post_fun
is applied to the result at the end of tidy_plus_plus()
and receive only one argument (the result of tidy_plus_plus()
). However,
if needed, the model is still attached to the tibble as an attribute, even
if keep_model = FALSE
. Therefore, it is possible to use tidy_get_model()
within tidy_fun
if, for any reason, you need to access the source model.
See Also
Other tidy_helpers:
tidy_add_coefficients_type()
,
tidy_add_contrasts()
,
tidy_add_estimate_to_reference_rows()
,
tidy_add_header_rows()
,
tidy_add_n()
,
tidy_add_pairwise_contrasts()
,
tidy_add_reference_rows()
,
tidy_add_term_labels()
,
tidy_add_variable_labels()
,
tidy_attach_model()
,
tidy_disambiguate_terms()
,
tidy_identify_variables()
,
tidy_remove_intercept()
,
tidy_select_variables()
Examples
ex1 <- lm(Sepal.Length ~ Sepal.Width + Species, data = iris) %>%
tidy_plus_plus()
ex1
df <- Titanic %>%
dplyr::as_tibble() %>%
dplyr::mutate(
Survived = factor(Survived, c("No", "Yes"))
) %>%
labelled::set_variable_labels(
Class = "Passenger's class",
Sex = "Gender"
)
ex2 <- glm(
Survived ~ Class + Age * Sex,
data = df, weights = df$n,
family = binomial
) %>%
tidy_plus_plus(
exponentiate = TRUE,
add_reference_rows = FALSE,
categorical_terms_pattern = "{level} / {reference_level}",
add_n = TRUE
)
ex2
if (.assert_package("gtsummary", boolean = TRUE)) {
ex3 <-
glm(
response ~ poly(age, 3) + stage + grade * trt,
na.omit(gtsummary::trial),
family = binomial,
contrasts = list(
stage = contr.treatment(4, base = 3),
grade = contr.sum
)
) %>%
tidy_plus_plus(
exponentiate = TRUE,
variable_labels = c(age = "Age (in years)"),
add_header_rows = TRUE,
show_single_row = all_dichotomous(),
term_labels = c("poly(age, 3)3" = "Cubic age"),
keep_model = TRUE
)
ex3
}