tidy_marginal_means {broom.helpers} | R Documentation |
Marginal Means with marginaleffects::marginal_means()
Description
Use marginaleffects::marginal_means()
to estimate marginal means and
return a tibble tidied in a way that it could be used by broom.helpers
functions. See marginaleffects::marginal_means()()
for a list of supported
models.
Usage
tidy_marginal_means(x, conf.int = TRUE, conf.level = 0.95, ...)
Arguments
x |
a model |
conf.int |
logical indicating whether or not to include a confidence interval in the tidied output |
conf.level |
the confidence level to use for the confidence interval |
... |
additional parameters passed to
|
Details
marginaleffects::marginal_means()
estimate marginal means:
adjusted predictions, averaged across a grid of categorical predictors,
holding other numeric predictors at their means. Please refer to the
documentation page of marginaleffects::marginal_means()
. Marginal means
are defined only for categorical variables.
For more information, see vignette("marginal_tidiers", "broom.helpers")
.
See Also
marginaleffects::marginal_means()
Other marginal_tieders:
tidy_all_effects()
,
tidy_avg_comparisons()
,
tidy_avg_slopes()
,
tidy_ggpredict()
,
tidy_marginal_contrasts()
,
tidy_marginal_predictions()
,
tidy_margins()
Examples
# Average Marginal Means
df <- Titanic %>%
dplyr::as_tibble() %>%
tidyr::uncount(n) %>%
dplyr::mutate(Survived = factor(Survived, c("No", "Yes")))
mod <- glm(
Survived ~ Class + Age + Sex,
data = df, family = binomial
)
tidy_marginal_means(mod)
tidy_plus_plus(mod, tidy_fun = tidy_marginal_means)
mod2 <- lm(Petal.Length ~ poly(Petal.Width, 2) + Species, data = iris)
tidy_marginal_means(mod2)