tidy_ggpredict {broom.helpers} | R Documentation |
Marginal Predictions with ggeffects::ggpredict()
Description
Use ggeffects::ggpredict()
to estimate marginal predictions
and return a tibble tidied in a way that it could be used by broom.helpers
functions.
See https://strengejacke.github.io/ggeffects/ for a list of supported
models.
Usage
tidy_ggpredict(x, conf.int = TRUE, conf.level = 0.95, ...)
Arguments
x |
a model |
conf.int |
logical indicating whether or not to include a confidence interval in the tidied output |
conf.level |
the confidence level to use for the confidence interval |
... |
additional parameters passed to |
Details
By default, ggeffects::ggpredict()
estimate marginal predictions at the
observed mean of continuous variables and at the first modality of categorical
variables (regardless of the type of contrasts used in the model).
For more information, see vignette("marginal_tidiers", "broom.helpers")
.
Note
By default, ggeffects::ggpredict()
estimates marginal predictions for each
individual variable, regardless of eventual interactions.
See Also
ggeffects::ggpredict()
Other marginal_tieders:
tidy_all_effects()
,
tidy_avg_comparisons()
,
tidy_avg_slopes()
,
tidy_marginal_contrasts()
,
tidy_marginal_means()
,
tidy_marginal_predictions()
,
tidy_margins()
Examples
df <- Titanic %>%
dplyr::as_tibble() %>%
tidyr::uncount(n) %>%
dplyr::mutate(Survived = factor(Survived, c("No", "Yes")))
mod <- glm(
Survived ~ Class + Age + Sex,
data = df, family = binomial
)
tidy_ggpredict(mod)
tidy_plus_plus(mod, tidy_fun = tidy_ggpredict)